

Wokingham Local Plan Update (LPU)

Air Quality – LPU Growth Scenario Appraisal

On behalf of Wokingham Borough Council

Project Ref: 332110523/AQ | Rev: Final_v2 | Date:January 2023

Document Control Sheet

Project Name: Wokingham Local Plan UpdateProject Ref:332110523/AQReport Title:Air Quality – LPU Growth Scenario AppraisalDoc Ref:Final_v2

	Name	Position	Signature	Date	
Prepared by:	Elena Recio Palanca	Senior Consultant	ERP	April 2022	
Reviewed by:	Philip Branchflower	Senior Associate	РВ	April 2022	
Approved by:	Ben Taylor	Senior Associate	ВТ	April 2022	
For and on behalf of Stantec UK Limited					

Revision	Date	Description	Prepared	Reviewed	Approved
Draft	04/2022	Draft for Client Comment	ERP	РВ	BT
Final	07/2022	Response to Client Comments	ERP	РВ	BT
Final v2	01/2023	Minor revision following client review	ERP	РВ	BT

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

1	Introdu	iction	7			
	1.1	Overview	7			
	1.2	Report Structure	7			
2	Releva	nt Legislation, Policy and Guidance	8			
	2.1	Air Quality Regulations	8			
	2.2	Air Quality Management	8			
	2.3	Protection of Habitats 1	10			
	2.4	Planning Policy1	12			
	2.5	Assessment Guidance 1	14			
3	Local F	Plan Update Growth Scenarios 1	16			
	3.1	Overview1	16			
	3.2	Reference Case1	16			
	3.3	Local Plan Update Growth Scenarios1	17			
4	Assess	sment Methodology1	19			
	4.2	Impacts at Human Receptors1	19			
	4.3	Impacts at Ecological Receptors	21			
	4.4	Assumptions and Limitations2	23			
5	Predict	ed Impacts on Human Receptors	24			
	5.1	Baseline Air Quality	24			
	5.2	Reference Case	28			
	5.3	LPU Growth Scenario 3d	29			
	5.4	LPU Growth Scenario 6a	31			
	5.5	LPU Growth Scenario 7a	34			
	5.6	Summary	37			
6	Impact	s at Ecological Receptors	38			
	6.1	Identified Ecological Receptors	38			
	6.2	LPU Growth Scenario 3d	39			
	6.3	LPU Growth Scenario 6a	10			
	6.4	LPU Growth Scenario 7a	11			
	6.5	Summary	12			
7	7 Summary and Conclusions					
Refe	rences		17			

Tables

Table 2-1 Relevant Air Quality Objectives / Limit Values	8
Table 2-2 Relevant Public Exposure	9
Table 2-3 Vegetation and Ecosystem Objectives	11
Table 5-1 Measured Annual Mean NO ₂ Concentrations 2015 – 2019	25
Table 5-2 Highest Ten Predicted Annual Average Concentrations of NO ₂ (µg/m ³)	28
Table 5-3 Highest Ten Predicted Annual Average Concentrations of PM ₁₀ (µg/m ³)	28
Table 5-4 Highest Ten Predicted Annual Average Concentrations of PM _{2.5} (µg/m ³)	28
Table 5-5 Sc3d: Highest Ten Predicted Annual Average Concentrations of NO2 (µg/m³) at Receptor	S
29	
Table 5-6 Sc3d: Highest Ten Predicted Annual Average Concentrations of PM ₁₀ (µg/m ³) at Receptor 29	S
Table 5-7 Sc3d: Highest Ten Predicted Annual Average Concentrations of PM _{2.5} (µg/m ³) at Receptor 30	rs
Table 5-8 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of NO ₂ (µg/m ³) Receptors 30	at
Table 5-9 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of PM ₁₀ (μg/m³) Recentors 31	at
Table 5-10 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of PM _{2.5} (µg/m	1³)
Table 5-11 Sc6a Highest Ten Predicted Annual Average Concentrations of NO ₂ (μ g/m ³) at Receptors	S
Table 5-12 Sc6a Highest Ten Predicted Annual Average Concentrations of PM ₁₀ (μg/m ³) at Recepto	rs
32 Table 5-13 Sc6a Highest Ten Predicted Annual Average Concentrations of PM _{2.5} (µg/m³) at Recepto	ors
32 Table 5-14 Sc6a Highest Ten Changes in Predicted Annual Average Concentrations of NO ₂ (μ g/m ³)	at
Receptors 33 Table 5-15 Sc6a Highest Ten Changes in Predicted Annual Average Concentrations of PM ₁₀ (µg/m ³))
at Receptors33 Table 5-16 Sc6a: Highest Ten Changes in Predicted Annual Average Concentrations of PM25 (ug/m	, ³)
at Receptors34	,
34 34	S
Table 5-18 Sc/a: Highest Ten Predicted Annual Average Concentrations of PM ₁₀ (µg/m ³) at Recepto 35	ors
Table 5-19 Sc7a: Highest Ten Predicted Annual Average Concentrations of PM _{2.5} (µg/m ³) at Receptors 35	
Table 5-20 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of NO ₂ (μ g/m ³) at Receptors35)
Table 5-21 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of PM ₁₀ (µg/m ³ at Receptors36	3)
Table 5-22 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of PM _{2.5} (µg/m ²) at Recentors 36	3)
Table 6-1 Identified Ecological Receptor's (Habitat Regulation Sites)	38
Table F-1 Scenario 3d: Predicted 'in-isolation' Annual Nitrogen Deposition at Modelled Ecological	00
Recentors (change >1% of critical load)	63
Table E-2 Scenario 3d: Predicted 'in-combination' Annual Nitrogen Deposition at Modelled Ecologica	al
Receptors (change >1% of critical load)	67
Table E-3 Scenario 6a: Predicted 'in isolation' Annual Nitrogen Deposition at Modelled Ecological	
Receptors (Change >1% of Critical Load)	79
Receptors (Change >1% of Critical Load)	83
Table E-5 Scenario 7a: Predicted 'in isolation' Annual Nitrogen Deposition at Modelled Ecological Deposition (Observe) 41% of Object Handle)	00
Receptors (Change >1% of Critical Load)	96
able E-o Scenario / a: Predicted in combination Annual Nitrogen Deposition at Modelled Ecologica Recentors (Change >1% of Critical Load)	الا 10
	01

Figures

- Figure 4-1 Human Health receptors and Verification Zones
- Figure 5-1 Monitoring Locations, and Air Quality Management Areas
- Figure 6-1 Habitat Regulation Sites (Overview and Modelled Transects)

Appendices

- Appendix A Glossary
- Appendix B Model Inputs and Results Processing
- Appendix C Model Verification (Human)
- Appendix D Model Verification (Ecological)
- Appendix E Ecological Results
- Appendix F Figures

this page is intentionally blank

1 Introduction

1.1 Overview

- 1.1.1 Stantec have been commissioned by Wokingham Borough Council (WBC) to provide support to understand the impact on Air Quality (at both human and ecological receptors) of future housing and employment growth and the resultant changes in traffic flows on the highway network. The outputs from the assessment will be used as part of the evidence base to support the preparation of the Local Plan Update (LPU).
- 1.1.2 Currently WBC is undertaking a review of the adopted development plan policy. Currently both the Core Strategy and the Managing Development Delivery Local Plan look forward to 2026. The LPU will put in place the spatial strategy and planning policies until at least 2038.
- 1.1.3 To support the preparation of the LPU, a number of growth scenarios have been appraised to assess the impact of growth on air quality.
- 1.1.4 This Air Quality LPU Growth Scenario Appraisal presents the methodology used to assess the growth scenarios. The subsequent results help to understand the impacts of the emissions resulting from growth and identify mitigation measures if required.
- 1.1.5 Subsequent to this appraisal, further modelling will be undertaken to inform the assessment of public health indicators (specifically indicator 3.01: fraction of mortality attributable to particulate air pollution and the percentage of all-cause mortality due to PM_{2.5}) of the Revised Growth Strategy and to inform the Habitats Regulation Assessment (HRA).

1.2 Report Structure

- 1.2.1 The remainder of this report is structured as follows:
 - Section 2 provide a summary of the relevant regulations and guidance
 - Section 3 provides an overview of the growth scenarios
 - Section 4 provides a summary of the applied modelling methodology
 - Section 5 presents the predicted result at human receptors
 - Section 6 presents the predicted results at ecological receptors
 - Section 7 summarises and concludes this report.

2 Relevant Legislation, Policy and Guidance

2.1 Air Quality Regulations

- 2.1.1 The Air Quality (England) Regulations 2000 (AQR) defined National Air Quality Objectives (NAQOs, a combination of concentration-based thresholds, averaging periods and compliance dates) for a limited range of pollutants. Subsequent amendments were made to the AQR in 2001 and 2002 to incorporate 'limit values' and 'target values' for a wider range of pollutants as defined in European Union (EU) Directives.
- 2.1.2 These amendments were consolidated by the Air Quality Standards Regulations 2010 (AQSR) (with subsequent amendments most notably in 2016 and for the devolved administrations), which transposed the EU's Directive on ambient air quality and cleaner air for Europe (2008/50/EC).
- 2.1.3 Following the Transition Period after the UK's departure from the EU in January 2020, the Air Quality (Amendment of Domestic Regulations) (EU Exit) Regulations 2019 (and subsequent amendments for the devolved administrations) have amended the AQ Standards Regulations 2010 to reflect the fact that the UK has left the EU, but do not change the pollutants assessed or the numerical thresholds. EU. The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020 amended the PM_{2.5} limit value in the AQSR to 20µg/m³.

Pollutant	Time Period	Objectives	Source
NO ₂	1-hour mean	200 µg/m ³ not to be exceeded more than 18 times a year	NAQO and AQSR limit value
	Annual mean	40 µg/m ³	NAQO and AQSR limit value
PM ₁₀	24-hour mean	50 µg/m ³ not to be exceeded more than 35 times a year	NAQO and AQSR limit value
	Annual mean	40 µg/m ³	NAQO and AQSR limit value
PM _{2.5}	Annual mean	20 µg/m ³	AQSR limit value

2.1.4 The relevant AQOs for this assessment are shown in **Table 2-1**.

Table 2-1 Relevant Air Quality Objectives / Limit Values

- 2.1.5 The NAQO's for NO₂ and PM₁₀ were to have been achieved by 2005 and 2004 respectively, but also continue to apply in all future years thereafter.
- 2.1.6 The 2019 Clean Air Strategy includes a commitment to set a "*new, ambitious, long-term target to reduce people's exposure to PM*_{2.5}" which the Environment Act 2021 has set at 10µg/m³ by 2040.

2.2 Air Quality Management

The Air Quality Strategy

2.2.1 Part IV of the Environment Act 1995 (Environment Act, 1995) required the Secretary of State to prepare and publish and 'strategy' regarding air quality.

2.2.2 The Air Quality Strategy (2007) establishes the policy framework for ambient air quality management and assessment in the UK (DEFRA, 2007). The primary objective of the Air Quality Strategy is to ensure that everyone can enjoy a level of ambient air quality which poses no significant risk to health or quality of life. The Air Quality Strategy sets out the NAQOs and Government policy on achieving these.

The Clean Air Strategy

2.2.3 The Clean Air Strategy (2019) aims to lower national emissions of pollutants, thereby reducing background pollution and minimising human exposure to harmful concentrations of pollution. The Strategy aims to create a stronger and more coherent framework for action to tackle air pollution (DEFRA, 2019a).

Local Air Quality Management

- 2.2.4 Part IV of the Environment Act 1995 (Environment Act, 1995) introduced a system of Local Air Quality Management (LAQM) which requires local authorities to regularly and systematically review and assess air quality within their boundary and appraise development and transport plans against these assessments.
- 2.2.5 Where a NAQO is unlikely to be met, the local authority must designate an Air Quality Management Area (AQMA) and draw up an Air Quality Action Plan (AQAP) setting out the measures it intends to introduce in pursuit of the NAQO's within its AQMA.
- 2.2.6 The Local Air Quality Management Technical Guidance 2016 (LAQM.TG(16); DEFRA, 2021b), issued by the Department for Environment, Food and Rural Affairs (DEFRA) for Local Authorities provides advice on where the NAQOs apply. These include outdoor locations where members of the public are likely to be regularly present for the averaging period of the objective (which vary from 15 minutes to a year) as summarised in **Table 2-2**.

Averaging Period	NAQOs should apply at:	NAQOs don't apply at:
		Façades of offices or other places of work where members of the public do not have regular access
Annual mean	All locations where members of the public might be regularly exposed	Hotels, unless people live there as their permanent residence
	For example: Building façades of residential	Gardens of residences
	properties, schools, hospitals, care homes etc	Kerbside sites
		Any other location where public exposure is expected to be short term
	All locations where the annual mean	Kerbside sites
24-hour mean and 8- hour mean	NAQO would apply, together with hotels and gardens of residences	Any other location where public exposure is expected to be short term
1-hour mean	All locations where the annual mean and 24 and 8-hour mean NAQOs apply as well as:	Kerbside locations where the public would not be expected to have
	Kerbside sites	regular access

Table 2-2 Relevant Public Exposure

Averaging Period	NAQOs should apply at:	NAQOs don't apply at:
	Those parts of car parks, bus stations and railway stations etc. which are not fully enclosed, where members of the public might reasonably be expected to spend one hour or more.	
	Any outdoor locations where members of the public might reasonably be expected to spend one hour or longer.	

National Air Pollution Plan for NO2 in the UK

- 2.2.7 The national Air Quality Plan for NO₂ (DEFRA, 2018) sets out how the Government plans to deliver reductions in NO₂ throughout the UK, with a focus on reducing concentrations to below the EU Limit Values (which are now AQSR limit values) throughout the UK within the 'shortest possible time'.
- 2.2.8 The plan requires all Local Authorities (LAs) in England which DEFRA identified as having exceedances of the Limit Values in their areas past 2020 to develop local plans to improve air quality and identify measures to deliver reduced emissions, with the aim of meeting the Limit Values within their area within "*the shortest time possible*". Potential measures include changing road layouts, encouraging public and private ultra-low emission vehicle (ULEV) uptake, the use of retrofitting technologies and new fuels and encouraging public transport. In cases where these measures are not sufficient to bring about the required change within 'the shortest time possible' then LAs may consider implementing access restrictions on more polluting vehicles (e.g. Clean Air Zones (CAZs)).

2.3 **Protection of Habitats**

- 2.3.1 As well as their potential to impact on human health, some air pollutants have long been acknowledged to have effects on vegetation and freshwater systems. Whilst direct impacts of air pollutants on fauna are less common, any such effect on the health of vegetation or freshwater systems can then affect animal species that are dependent on the vegetation.
- 2.3.2 Biodiversity 2020 is the latest biodiversity strategy for the UK (DEFRA, 2020) and aims to "halt biodiversity loss, support healthy well-functioning ecosystems and establish coherent ecological networks...". The Strategy recognises air pollution as a direct environmental pressure on biodiversity and planning and development as one of the sectors with the greatest potential for direct influence.
- 2.3.3 The Conservation of Habitats and Species Regulations 2017 (Statutory Instrument, 2017) (the 'Habitats Regulations'), transposed the Habitats Directive (European Council Directive 92/43/EEC) in England and Wales. The Conservation of Habitats and Species (Amendment) (EU Exit) Regulations 2019 (Statutory Instrument, 2019) amends the 2017 Habitats Regulations to reflect the UK's departure from the EU and came into force following the end of the Transition Period in December 2020.
- 2.3.4 The Habitats Regulations require the UK Government to introduce a range of measures for the protection of habitats and species. Special Areas of Conservation (SACs) are designated under these regulations, as are Special Protection Areas (SPAs). These sites form a network termed 'Natura 2000' and collectively these sites are known as European Sites, or the 'national site network'.
- 2.3.5 Designated Wetlands of International Importance (known as Ramsar sites) do not form part of the national site network. Many Ramsar sites overlap with SACs and SPAs and may be

designated for the same or different species and habitats. All Ramsar sites remain protected in the same way as SACs and SPAs.

- 2.3.6 The Habitats Regulations primarily provide measures for the protection of European Sites and European Protected Species, but also require local planning authorities to encourage the management of other features that are of major importance for wild flora and fauna.
- 2.3.7 The Habitats Regulations require the competent authority firstly to evaluate whether a project of plan has the potential to give rise to a *"likely significant effect"* (LSE) and where this is the case, an *"appropriate assessment"* (AA) is required to determine whether the development will adversely affect the integrity of the site.

Critical Levels

- 2.3.8 Critical levels are a quantitative estimate of exposure to one or more airborne pollutants in gaseous form, below which significant harmful effects on sensitive elements of the environment do not occur, according to present knowledge
- 2.3.9 Critical levels for NOx for the protection of vegetation and ecosystems have been set by the UK Government within the AQSR as summarised in **Table 2-3** and are the same as the EU limit values and Natural England applies the objective to all internationally designated conservation Sites and SSSIs.

Pollutant	Time Period	Objective		
Oxides of nitrogen (expressed as	Annual mean	30 µg/m³		
NO ₂)	24-hour mean	75 μg/m³		
Ammonia (NH₃)	Annual mean	3 μ g/m ³ (unless lichens or bryophytes are present, then 1 μ g/m ³)		

Table 2-3 Vegetation and Ecosystem Objectives

Critical Loads

- 2.3.10 Critical loads for nitrogen deposition onto sensitive ecosystems have been identified by the United Nations Economic Commission for Europe (UNECE). They are defined as the amount of pollutant deposited to a given area over a year, below which significant harmful effects on sensitive elements of the environment do not occur, according to present knowledge.
- 2.3.11 In relation to combustion emissions, critical loads for eutrophication and acidification are relevant which can occur via both wet and dry deposition; however, on a local scale only dry (direct deposition) is considered significant.
- 2.3.12 Empirical critical loads for eutrophication (derived from a range of experimental studies) are assigned based for different habitats, including grassland ecosystems, mire, bog and fen habitats, freshwaters, heathland ecosystems, coastal and marine habitats, and forest habitats and can be obtained from the UK Air Pollution Information System (APIS) website (APIS, 2022)
- 2.3.13 Critical loads for acidification have been set in the UK using an empirical approach for nonwoodland habitats on a 1km grid square based upon the mineralogy and chemistry of the dominant soil series present in the grid square, and the simple mass balance (SMB) equation for both managed and unmanaged woodland habitats.

2.4 Planning Policy

National Planning Policy

- 2.4.1 The National Planning Policy Framework (NPPF) sets out the Government's planning policies for England and how they are expected to be applied (Ministry of Housing, Communities & Local Government, 2021). The following paragraphs are considered relevant from and air quality perspective.
- 2.4.2 Paragraph 174 on conserving and enhancing the natural environment states:

"Planning policies and decisions should contribute to and enhance the natural and local environment by: ...

e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land stability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans, and..."

2.4.3 Paragraph 180 within habitats and biodiversity states:

"When determining planning applications, local planning authorities should apply the following principles:

a) if significant harm to biodiversity resulting from a development cannot be avoided (through locating on an alternative site with less harmful impacts), adequately mitigated, or, as a last resort, compensated for, then planning permission should be refused;

b) development on land within or outside a Site of Special Scientific Interest, and which is likely to have an adverse effect on it (either individually or in combination with other developments), should not normally be permitted. The only exception is where the benefits of the development in the location proposed clearly outweigh both its likely impact on the features of the site that make it of special scientific interest, and any broader impacts on the national network of Sites of Special Scientific Interest;

c) development resulting in the loss or deterioration of irreplaceable habitats (such as ancient woodland and ancient or veteran trees) should be refused, unless there are wholly exceptional reasons and a suitable compensation strategy exists; and

d) development whose primary objective is to conserve or enhance biodiversity should be supported; while opportunities to improve biodiversity in and around developments should be integrated as part of their design, especially where this can secure measurable net gains for biodiversity or enhance public access to nature where this is appropriate".

2.4.4 Paragraph 185 within ground conditions and pollution states:

"Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development."

2.4.5 Paragraph 186 states that:

"Planning policies and decisions should sustain and contribute towards compliance with relevant limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and Clean Air Zones, and the cumulative impacts from individual sites in local areas. Opportunities to improve air quality or mitigate impacts should be identified,

such as through traffic and travel management, and green infrastructure provision and enhancement. So far as possible these opportunities should be considered at the plan-making stage, to ensure a strategic approach and limit the need for issues to be reconsidered when determining individual applications. Planning decisions should ensure that any new development in Air Quality Management Areas and Clean Air Zones is consistent with the local air quality action plan."

National Planning Practice Guidance

2.4.6 The Government maintains a series of online Planning Practice Guidance which supplements the NPPF. Paragraph 002 Reference ID: 32-002-20191101 (revision date 01.11.2019), of the PPG: Air Quality provides guidance on the role of plan-making with regard to air quality as follows:

"All development plans can influence air quality in a number of ways, for example through what development is proposed and where, and the provision made for sustainable transport. Consideration of air quality issues at the plan-making stage can ensure a strategic approach to air quality and help secure net improvements in overall air quality where possible.

It is important to take into account air quality management areas, Clean Air Zones and other areas including sensitive habitats or designated sites of importance for biodiversity where there could be specific requirements or limitations on new development because of air quality. Air quality is also an important consideration in habitats assessment, strategic environmental assessment and sustainability appraisal which can be used to shape an appropriate strategy, including through establishing the 'baseline', appropriate objectives for the assessment of impacts and proposed monitoring.

Drawing on the review of air quality carried out for the local air quality management regime, plans may need to consider:

- what are the observed trends shown by recent air quality monitoring data and what would happen to these trends in light of proposed development and / or allocations;
- the impact of point sources of air pollution (pollution that originates from one place);

• the potential cumulative impact of a number of smaller developments on air quality as well as the effect of more substantial developments, including their implications for vehicle emissions;

ways in which new development could be made appropriate in locations where air quality is or is likely to be a concern, and not give rise to unacceptable risks from pollution. This could, for example, entail identifying measures for offsetting the impact on air quality arising from new development including supporting measures in an air quality action plan or low emissions strategy where applicable; and

• opportunities to improve air quality or mitigate impacts, such as through traffic and travel management and green infrastructure provision and enhancement.

As part of the strategic environmental assessment or sustainability appraisal of a plan, consideration will need to be given to potential trends in air quality in the presence and absence of development, as well as any impacts and mitigation / improvement opportunities arising from the plan's proposals."

2.4.7 Paragraph 008, Reference 32-008-20140306 (revision date 01.11.2019), of the PPG provides guidance on how an impact on air quality can be mitigated:

"Mitigation options will need to be locationally specific, will depend on the proposed development and need to be proportionate to the likely impact. It is important that local planning authorities work with applicants to consider appropriate mitigation so as to ensure new

development is appropriate for its location and unacceptable risks are prevented. Planning conditions and obligations can be used to secure mitigation where the relevant tests are met.

Examples of mitigation include:

Maintaining adequate separation distances between sources of air pollution and receptors;

• Using green infrastructure, trees, where this can create a barrier or maintain separation between sources of pollution and receptors;

Appropriate means of filtration and ventilation;

Including infrastructure to promote modes of transport with a low impact on air quality (such as electric vehicle charging points);

Controlling dust and emissions from construction, operation and demolition; and

• Contributing funding to measures, including those identified in air quality action plans and low emission strategies, designed to offset the impact on air quality arising from new development."

2.5 Assessment Guidance

2.5.1 The primary guidance documents used in undertaking this assessment are detailed in the section below.

Relevant Local Guidance

DEFRA 'Local Air Quality Management Technical Guidance (LAQM.TG(16))'

2.5.2 DEFRA LAQM.TG(16) was published for use by local authorities in their LAQM review and assessment work (DEFRA, 2021). The document provides key guidance on aspects of air quality assessment, including screening, use of monitoring data, and use of background data that are applicable to all air quality assessments.

IAQM 'Guide to the Assessment of Air Quality Impacts on Designated Nature Conservation Sites'

2.5.3 The IAQM has published guidance on the assessment of air quality impacts on designated nature conservation sites (IAQM, 2019) which adopts a similar procedure to that detailed in Natural England guidance on the assessment of road traffic emissions (Natural England, 2018) and identifies that exhaust pipe emission of ammonia is an additional relevant pollutant when assessing nitrogen deposition to sensitive ecological features.

JNCC 'Guidance on Decision-making Thresholds for Air Pollution'

- 2.5.4 The JNCC has published guidance (Chapman & Kite, 2021) on decision making thresholds (DMT) to help inform the assessment of the impacts of air quality on designated nature conservation sites.
- 2.5.5 These DMTs have been derived through an assessment which aims to consider the cumulative effects of plans and projects which might be excluded from further assessment. These DMT are intended to be applied to individual developments (as opposed to a Local Plan) to identify which are below a relevant threshold can properly be discounted on the basis that their contribution to an overall combined effect will not undermine the achievement of the conservation objectives or make a meaningful contribution to a significant effect.

2.5.6 In relation to local plans, the JNCC guidance (JNCC, 2022a) identifies that a 'zone of influence' of 10km from the 'plan' boundary is appropriate recognising that the effects of growth from development beyond 10km will have been accounted for in the Nitrogen Futures business as usual scenario.

3 Local Plan Update Growth Scenarios

3.1 Overview

3.1.1 The Transport Assessment (Stantec, 2021) considered the transport implications of the following different growth and mitigation options:

- 3.1.2 This Air Quality LPU Growth Scenario Appraisal considers a subset of these scenarios (specifically scenarios 3d, 6a and 7a) which relate to different development quantum and mitigation options relating to the Hall Farm site as summarised in the following sections.
- 3.1.3 This Air Quality LPU Scenario Appraisal is informed by Transport Modelling undertaken using the Wokingham Strategic Transport Model 4 (WSTM4) model for the 2038 forecast year.

3.2 Reference Case

- 3.2.1 The Reference Case model will be used as the basis of comparison with the growth scenarios and will inform the impacts and mitigation that would be required should the growth be delivered. The Reference Case therefore includes all committed growth up to 2038 which results from development in neighbouring authorities and growth within Wokingham Borough, excluding likely growth associated with emerging Local Plan. The Reference Case therefore presents a picture of air quality conditions, prior to the addition of the potential growth scenarios as part of the LPU.
- 3.2.2 The following schemes are included in the 2038 forecast scenarios, the majority of which are now implemented and operational:
 - M4 Smart Motorway (Junction 3-12)
 - Elms Road Link Road
 - Winnersh Relief Road Phase 1

A Link road including new junctions with King Street Lane and Lower Earley Way

- Winnersh Relief Road Phase 2

A link road connecting B3030 King Street Lane / Winnersh Relief Road Phase 1 to the A329 Reading Road

- Arborfield Cross Relief Road (ACRR);

- North Wokingham Distributor Road (NWDR);

The NWDR will connect the A329 near the BP garage on Reading Road, with the A329(M) Reading to Bracknell motorway near the Coppid Beech roundabout junction.

- South Wokingham Distributor Road (SWDR);

Following on from the development on William Heelas Way in Montague Park, the SWDR will join with Waterloo Road, and then run west across Easthampstead Road to Finchampstead Road - connecting at the existing Tesco roundabout.

- Shinfield Eastern Relief Road (SERR).

A 2km length of single carriageway road running eastwards from the new signalised junction, crossing Cutbush Lane and joining the existing A327, Arborfield Road at a new roundabout located between the Parrot Farmhouse and Magpie and Parrot Public House

- Nine Mile Ride Extension (NMRE)

NRME connects the existing A327 Eversley Road in the north with the Nine Mile Ride / Park Lane junction in the south.

- Barkham Bridge

The Barkham Bridge project consists of a new bridge structure across the Barkham Brook and approximately 300 metres of associated carriageway realignment.

- 3.2.3 The overall traffic growth outside of Wokingham Borough for neighbouring authority traffic is set to NTEM forecasts. Trips for large development sites close to the Wokingham Borough boundary have been added to the model where deemed to impact the Wokingham Borough or strategic road network within proximity to the borough.
- 3.2.4 Neighbouring local authorities to Wokingham Borough are also in the process of producing new local plans. National planning policy requires cross boundary cooperation to share as much information as possible to reach agreements on strategic matters. Local authorities where impacts will need to be considered include Bracknell Forest Council (BFC), Reading Borough Council (RBC), West Berkshire District Council (WBDC), Hart District Council (HDC) and Royal Borough of Windsor Maidenhead (RBWM). There may also be other local authorities that are not immediately adjacent to Wokingham Borough, but are important to engage with given strategic issues, for example due to the Strategic Road Network extending into wider areas and commuting patterns.
- 3.2.5 Neighbouring authorities, namely Basingstoke and Deane Borough Council (BDBC), BFC, HDC, RBC, WBDC, Buckinghamshire Council (BC), RBWM and South Oxfordshire District Council (SODC) and Vale of White Horse District Council (VWHDC), were contacted to provide details of commitments in their development plans to inform the transport modelling.
- 3.2.6 Development plans from these authorities informed the development assumptions in the Reference Case transport model scenario.

3.3 Local Plan Update Growth Scenarios

- 3.3.1 The full range of the growth scenarios are defined in the Transport Assessment (Stantec, 2021) (with and without required mitigation), and the following scenarios have been subject to Air Quality assessment within this scenario appraisal:
 - Scenario 3d 4,450 dwellings at Hall Farm, 354,000m² of employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and a new M4 junction.

- Scenario 6a 4,450 dwellings at Hall Farm, no additional employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.
- Scenario 7a 4,450 dwellings at Hall Farm, 100,000m² of science park type employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.

4 Assessment Methodology

4.1.1 The assessment methodology detailed in the following sections has been applied to ascertain the potential impacts of emissions to air associated with growth scenarios in order to identify whether or not additional mitigation is required.

4.2 Impacts at Human Receptors

Identification of Receptors

- 4.2.1 Relevant sensitive human receptor locations are places where members of the public might be expected to be regularly present over the averaging period of the NAQOs. The NO₂, PM₁₀ and PM_{2.5} annual mean and 1-hour mean NAQO sensitive locations include largely residential dwellings. When identifying the receptors, particular attention has been paid to assessing impacts close to junctions, traffic lights and roundabouts where traffic may become congested, where there is a combined effect of several road links and routes along which substantial volumes of traffic generated will travel. In some cases, traffic arising from the growth scenarios result in a redistribution of traffic on the local network.
- 4.2.2 Based on these criteria, 1,146 sensitive receptors have been identified for the assessment. These locations are shown in **Figure 4-1**, **Appendix F** Concentrations of pollutants (NO₂, PM₁₀ and PM_{2.5}) have been predicted at sensitive existing properties and within the LPU sites to allow comparison with the NAQOS.
- 4.2.3 Concentrations have also been predicted at one automatic monitoring station and diffusion tube monitoring sites within Wokingham in order to verify the modelled results. Paragraphs 4.2.14 4.2.16 and Appendix C provide further details on the verification method.

Modelling Approach

- 4.2.4 The following scenarios have been modelled:
 - 2015 Traffic Model Baseline and Air Quality Model Verification;
 - 2038 Reference Case (excluding potential LPU growth but including committed developments);
 - 2038 Scenario 3d (including forecast growth on the local network and Growth Scenario 3d);
 - 2038 Scenario 6a (including forecast growth on the local network and Growth Scenario 6a);
 - 2038 Scenario 7a (including forecast growth on the local network and Growth Scenario 7a)
- 4.2.5 The assessment for human health has considered all roads within the WBC administrative area contained within WSTM4, and roads on the model network up to 300m from the borough boundary to capture impacts of roads beyond the boundary on sensitive receptors.
- 4.2.6 Emissions from road vehicles and their resultant impact at receptor locations have been predicted using the ADMS-Roads dispersion model (v5.0.0.1). The model requires the user to provide various input data, including traffic flows (in AADT format), vehicle composition (i.e. the proportion of Heavy Duty Vehicles (HDVs)), road characteristics (including road width, gradient and street canyon dimensions, where applicable), and average vehicle speed.

- 4.2.7 AADT flows, speeds and the proportions of HDVs, for roads within the study area have been provided by the Project's transport consultants, Stantec, extracted from WSTM4. The road geometry and widths have been derived from OS MasterMap data.
- 4.2.8 Road vehicular emissions are primarily associated with the exhaust emissions but also include particles generated from abrasion (of tyres, brakes and road). The EFT allows users to calculate road vehicle pollutant emission rates for NOx, PM₁₀ and PM_{2.5} (exhaust and brake, tyre and road wear) for a specified year, road type, vehicle speed and vehicle fleet composition. Traffic emissions have been calculated using the Emission Factor Toolkit (EFT) v11 (DEFRA, 2020c), which utilises NOx emission factors taken from the European Environment Agency (EEA) COPERT 5.3 emission tool. The traffic data were entered into the EFT to provide emission rates for each of the road links within the traffic model.
- 4.2.9 The EFT provides pollutant emission rates for 2018 through to 2030 (and 2050 in EFTv11) and takes into consideration bespoke vehicle fleet information as well as the following information available from the National Atmospheric Emissions Inventory (NAEI):
 - fleet composition data for motorways, urban and rural roads in the UK (excluding London);
 - fleet composition based on European emission standards from pre-Euro I to Euro6/VI (including Euro 6 subcategories);
 - scaling factors reflecting improvements in the quality of fuel and some degree of retrofitting; and
 - technology conversions in the national fleet.
- 4.2.10 As a result of this the road vehicle exhaust emissions of NOx are projected to decrease year-on-year due to technological advances and improvements to the fleet mix i.e. penetration of Euro VI HDVs, which recent research suggests are performing well and are considered reasonably certain to continue to be delivered. Whilst there has been uncertainty over NOx emissions from vehicle exhausts (particularly from Euro 5 and 6 LDVs) it is important to note the EFT is not based on the Euro emission standards. Specifically, the latest version of the EFT (v11) includes updated NOx and PM speed emission coefficient equations for Euro 5 and 6 vehicles taken from the EEA COPERT 5.3 emission calculation tool, reflecting emerging evidence on the real-world emission performance of these vehicles.
- 4.2.11 Whilst the EFT (v11) provides pollutant emission rates upto 2035, beyond 2030 these are primarily provided to inform climate assessments and air pollutant emissions subject to significant uncertainty; therefore 2030 emission factors were applied in the 2038 growth scenarios. This is considered to represent a conservative assessment, given the assumed completion of all allocated developments by 2038. With regards to the verification and baseline models, 2015 vehicle fleet composition was imported from a previous version of the EFT (v11) and run with custom fleet to provide emissions equivalent to the 2015 fleet mix, but using the latest emission factors provided in EFT v11.
- 4.2.12 Background pollutant concentrations for the study area have been taken from Defra's national maps, which are provided on a 1km x 1km grid with 'sector removal' for modelled road types. An interpolation exercise has been undertaken to reduce any step changes that may occur as a result of Defra's maps resolution.
- 4.2.13 The model also requires meteorological data and has been run using 2015 meteorological data from the Farnborough meteorological station, which are considered suitable for this area. To account for differing locations within the study area and best represent the dispersion in the receptor location, the Urban Canopy flow option in ADMS-Roads has been used. **Appendix B** provides further details on the model inputs.

Model Verification

- 4.2.14 A comparison of NOx modelled results with monitoring results within the study area has been undertaken using the approach recommended in Defra's Local Air Quality Management Technical Guidance (TG16). The following verification zones (as shown in Figure 5-1) have been applied depending on the monitoring location setting and whether it is located within an AQMA:
 - Zone A: Twyford village- verification factor of 4.90;
 - Zone B: Wokingham Town and Wokingham West urban areas verification factor of 1.72;
 - Zone C: M4 area verification factor of 1; and
 - Zone D: Wokingham Rural verification factor of 1.47.
- 4.2.15 The calculated emission factors imply that the model has under-predicted the road NOx contribution. This is a common experience with this and most other models. With regards to Modelled PM₁₀ and PM_{2.5} have been adjusted using the verification factors obtained for NOx.
- 4.2.16 Details of the verification factor calculations and the monitoring sites included in the verification process are presented in **Appendix C**.

Processing of Modelled Results

- 4.2.17 In accordance with LAQM TG(16), all modelled road-based concentrations of NOx were converted to annual mean NO₂ using the NOx to NO₂ calculator (Defra, 2020).
- 4.2.18 Once processed, the predicted concentrations were compared against the relevant NAQOs for NO₂, PM_{10} and $PM_{2.5}$.

4.3 Impacts at Ecological Receptors

- 4.3.1 In order to inform the assessment of the impact of traffic emission associated with the potential growth under the LPU, the following scenarios have been investigated:
 - 2015 Baseline (for verification)'
 - 2038 Do Nothing (DN) a theoretical future baseline with no traffic growth between the baseline and 2038, but with anticipated reduction in emissions from traffic and background concentrations
 - 2038 Do Minimum (DM) the 'reference case' traffic model scenario with forecast growth on the local road network between the baseline and 2038, but with anticipated reduction in emissions from traffic and background concentrations
 - 2038 Do Something (DS) Forecast growth on the local road network between the 2015 baseline and 2038 plus growth due to the implementation of the differing growth scenarios (3d, 6a,7a) with anticipated reduction in emissions from traffic and background concentrations
- 4.3.2 The results for the Do-Minimum and Do-Something scenarios have been compared to show the impacts of the growth scenarios 'in isolation'.
- 4.3.3 The results of the Do-Nothing and Do-Something scenarios have been compared to identify the potential 'in-combination' impacts associated with the growth scenarios and other projects and

plans (although it should be noted that many of these have already been developed given the 2015 base year).

Identification of Relevant Roads and Receptors

- 4.3.4 In relation to ecological receptors, guidance (NE, 2018 and IAQM, 2020) indicates that a detailed (quantitative) air quality assessment of impacts is required where there are sensitive habitats (within designated sites) within 200 m of a road with a 'potentially significant change'. If there are no designated sites containing sensitive habitats within 200 m of an affected road, then no further assessment is required as research shows (NE, 2018) that there is no credible risk of a significant effect beyond 200m from a road which might undermine a site's conservation objectives.
- 4.3.5 The 'potentially significant change' could be associated with carriageway realignment (i.e. increased proximity to receptors), changes to speed (>10 kph) or traffic flow. The applied screening criteria for changes in road traffic flows is a change of LDV flows of more than 1,000 AADT (or HDV flows of more than 100 AADT).
- 4.3.6 This change in traffic flows has been shown (NE, 2018) to not have the potential to result in changes to annual NOx in excess of 0.3 μg/m³ (i.e 1% of the critical level of 30 μg/m³) within a few meters of roadside. Changes in traffic flows below these criteria are therefore not considered to have the potential to result in a significant effect which might undermine a site's conservation objectives.
- 4.3.7 Whilst the JNCC guidance (JNCC, 2022a) does not provide screening thresholds for changes in traffic flows applicable to 'plans', to enable a proportionate assessment ,within 10km of the WBC boundary the threshold of 1,000 AADT (as explained in 4.3.6) has been applied to the 'in-combination' change in traffic flows and a screening criterion of 50 AADT has been applied to 'in-isolation' increases in traffic flows associated with the growth scenarios.
- 4.3.8 This 'in-isolation' screening criteria was agreed during consultation with NE and JNCC research¹ (JNCC, 2022b) indicates that such changes in traffic flows are unlikely to lead to impacts in excess of 0.5% of the annual average critical level for NOx or critical load for N-deposition at 1m from road edge are therefore not considered to have the potential to result in a significant effect which might undermine a site's conservation objectives.

Modelling Approach

- 4.3.9 All roads from the WSTM4 within 1km of the identified relevant ecological receptors (as shown on **Figure 6-1**) have been included within the model, with road geometry adjustment (to align with OS basedata) within 500 m.
- 4.3.10 A variable surface roughness file has been incorporated within the modelling to account for difference in land characteristics actors the study area.
- 4.3.11 In order to quantify the potential impact of air pollutant from traffic on ecological receptors, the EFT has been applied (with a 2030 emission year for the growth scenarios) to quantify NOx emissions and emissions of ammonia (NH₃) are calculated using the Calculator for Road Emissions of Ammonia (CREAM²) tool (with a 2030 emission year for the growth scenarios).
- 4.3.12 The ADMS Roads has been used to calculate concentrations of NOx and NH₃ at a range of transects at increasing distances from the adjacent road (at site boundary and 5m increments

¹ Table 12 & 13 of the JNCC research tabulates the AADT change that could result in a 1% change of critical level or load at 1m from road edge, this exceeds 100 AADT for a majority of habitats and is based on 2019 emission factors.

² Air Quality Consultants (2020). 'Calculator for Road Emissions of Ammonia (CREAM) v1A.' Available at: https://www.aqconsultants.co.uk/resources

for first 30m from the road, then 10m until 50m from the road, then 25m until 200m from the road). The resultant nitrogen (and acid) deposition rates have been calculated using deposition velocities for grassland habitats of 1.5mm/s for NO₂ and 20mm/s for NH₃, and for taller vegetation such as trees of 3mm/s for NO₂ and 30mm/s for NH₃

4.3.13 For these receptors, existing critical levels and critical loads for habitats within the study area were collated from the Air Pollution Information System website (APIS, 2022).

Model Verification

- 4.3.14 For the calculation of impacts of NOx at ecological receptors, a separate verification study was undertaken utilising diffusion tubes within Bracknell Forest Borough; these locations are outside of main urban areas and in relative proximity to the ecological receptors. Monitoring data reported in the BF Pre-Submission Local Plan within the ecological designations comprised of 3-months of NO₂ data from March 2019 which was then annualised and converted to NOx for use in model verification against the 2019 traffic model for BFC. This monitoring indicated widespread exceedances of the annual mean critical level for NOx however it is not considered applicable to this assessment as the year of monitoring does not correspond to the WSTM4 baseline year (2015).
- 4.3.15 The model verification study is summarised in **Appendix D** and a factor of 2.785 applied to modelled road-NOx concentrations which is considered typical for this type of assessment.
- 4.3.16 Model results of ammonia have not been verified as the emission factors are derived from roadside measurement and therefore verification is not required.

Assessment of Impacts

- 4.3.17 In terms of the impact of road traffic emissions on ecological receptors, an impact of less than 1% of the critical level or load is accepted to be a pragmatic threshold for determining no likely significant effects (Natural England, 2018). It should be noted that an impact of more than 1% is not, per se, an indication that a significant effect exists, only the possibility of one. which would trigger the need for further, more detailed assessment of the ecological sensitivity and value of the habitat.
- 4.3.18 Where the predicted impact exceeds 1%, consideration needs to be given to the overall critical level or load (within an ecological assessment) to ascertain the potential significant of the impact and resultant effects.

4.4 Assumptions and Limitations

- 4.4.1 There are many components that contribute to the uncertainty in predicted concentrations. The model used in this assessment is/are dependent upon the traffic that have been input which will have inherent uncertainties associated with them. There is then additional uncertainty as the model is required to simplify real-world conditions into a series of algorithms.
- 4.4.2 There has been an acknowledged disparity between national road transport emissions projections and measured annual mean concentrations of nitrogen oxides (NOx) and NO₂ for many years. Recent monitoring has shown that reductions in concentrations are now being measured in many parts of the country (Air Quality Consultants Ltd., 2020), however, there is still some uncertainty regarding the rate at which emissions will reduce in the future and therefore some consideration must be given to the accuracy of any projection and to appropriately respond to this.
- 4.4.3 To account for this uncertainty, the growth scenario appraisal has been based on 2030 emission factors and background concentrations, whilst utilising traffic flows for 2038. This is considered to provide an appropriately conservative assessment taking into account the uncertainties regarding future vehicle emission factors.

5 Predicted Impacts on Human Receptors

5.1 Baseline Air Quality

5.1.1 The study area does not contain any predicted or measured exceedances of an EU Limit Values either in the current year or the future year. The study area is not within a zone where DEFRA have reported an exceedance of an EU Limit Values in future years.

LAQM

- 5.1.2 WBC has investigated air quality within its administrative area as part of its responsibilities under the Local Air Quality Management (LAQM) regime. WBC has declared three Air Quality Management Areas (AQMAs) as follows (as shown in **Figure 5-1**):
 - The Wokingham AQMA an area encompassing properties along the M4 motorway, and along part of the A329 where it passes under the M4;
 - The Twyford Crossroads AQMA an area which covers residential and commercial properties along parts of the High Street, Wargrave Road, London Road and Church Street; and
 - The Wokingham Town Centre AQMA an area which covers residential and commercial properties along a small part of Reading Road and Station Road in the northwest, along Shute End and into Broad Street and Denmark Street in the south-west and Peach Street into London Road in the west.
- 5.1.3 All AQMAs were declared due to exceedances of the annual mean nitrogen dioxide (NO₂) National Air Quality Objective (NAQO) and the Wokingham (M4) AQMA was also declared for exceedances of the hourly mean NAQO.
- 5.1.4 WBC undertakes automatic continuous monitoring of NO₂ concentrations at two sites, and passive monitoring using diffusion tubes at 46 locations. No particulate matter (PM₁₀ and PM_{2.5}) monitoring is undertaken at present.
- 5.1.5 Concentrations of NO₂ measured within WBC administrative area are provided in **Table 5-1** below, and their locations in relation to the AQMA's are shown in **Figure 5-1**. Where there have been exceedances of the NAQO these are highlighted in bold. 2020 monitoring results have not been included in **Table 5-1**, as these are not considered to be representative due to COVID-19 restrictions in place during 2020. The 2021 data was not available at the time of writing.
- 5.1.6 The data shows that the NAQO for annual mean NO₂ was generally met at most monitoring locations, with the exception of some diffusion tubes within the Wokingham Town Centre AQMA and the Twyford Crossroads AQMA, where the annual mean was slightly exceeded in recent years. All mean concentrations were less than 60 μg/m³, which indicates no exceedances of the 1-hour NO₂ objective.
- 5.1.7 Overall, the diffusion tube sites NO₂ levels in Wokingham Borough have shown a decreasing trend in NO₂ since 2015, a trend that is generally evident nationwide (AQC, 2020a).

Table 5-1 Measured Annual Mean NO₂ Concentrations 2015 – 2019

Site ID	Site Name	Site Type	Within		,	Annual Mean	(µg/m³)	
			AQMA	2015	2016	2017	2018	2019
		Automatic S	Site					
CM2*	Peach Street	Roadside	Y	35	41.3	38.1	32.9	33.0
CM3	Twyford Cross Roads	Kerbside	Y	-	-	-	-	29.9
		Diffusion Tu	bes					
WOK11*	Robin Hood Lane, Winnersh	Roadside	N	32	31.9	35.4	29.2	32.0
WOK19*	Thames Street (by bridge), Sonning	Roadside	N	27	22.2	31.1	26.5	28.9
WOK52*	Westende Flats, London Road, Wokingham	Urban Centre	N	33	30.8	34.9	29.2	30.3
WOK53*	Dunt Lane, Hurst	Roadside	Y	27	22	27.8	22.8	22.1
WOK70*	Longdon Road, Winnersh	Roadside	Y	29	25	28.5	27.3	25.5
WOK71*	38 King Street Lane, Winnersh	Roadside	N	33	24.3	33.1	30.2	31.9
WOK98*	309 Reading Road, Winnersh	Roadside	Y	32	29	37.1	31.1	25.4
WOK503*	25, Rainworth Close Lower Earley	Suburban	N	31	27	32.2	26.7	27.5
WOK505*	23 Church Road Earley	Roadside	N	38	31.5	38.3	36.9	36.5
WOK509*	Henley Bridge Remenham	Roadside	N	27	24.4	28.1	23.8	23.9
WOK601*	Sadler's Lane Winnersh	Roadside	Y	25	24.8	23.1	22.4	20.0
WOK602*	2 Green Lane Winnersh	Roadside	Y	28	27.4	26	25.2	21.2
WOK803*	3 Wellington Road, Wokingham	Roadside	N	28	29.1	32.1	30.7	30.7
WOK805*	18 Barkham Road, Wokingham	Roadside	N	24	27	25.9	237	25.0
WOK817*	298 London Road, Wokingham	Roadside	N	29	26.1	33.1	28.8	21.6
WOK825*	High Street south, Wargrave	Roadside	N	35	36	35.6	29.5	31.1
WOK827*	The Old Station House, Station Road, Twyford	Kerbside	N	27	23.4	27.9	21.4	20.6
WOK829*	Long Acre, Thames Street, Sonning	Roadside	N	31	33	33.3	28.0	28.6
WOK835*	14, Robinhood Lane, Winnersh	Roadside	N	33	28.5	32.4	27.9	26.6

Site ID	Site Name	Site Type	Within		A	Annual Mean	(µg/m³)	
			AQMA	2015	2016	2017	2018	2019
WOK836	343 Old, Whitley	Roadside	Y	38	29.6	33.6	26.2	27.0
WOK838*	Giggling Spring Shute End Wokingham	Roadside	Y	43	45	44	41.3	41.8
WOK840	30 Finbeck Way, Lower Earley	Suburban	N	24	24	24.9	21.6	24.8
WOK841*	2 Lane End Villas, Shinfield	Roadside	N	39	37.2	39.1	30.1	33.3
WOK842*	Foxglade, Brookers Hill, Shinfield	Other	Y	26	29	25	24.6	20.0
WOK844*	Buckingham Court, Wokingham	Roadside	Y	39	40.5	45	36	38.6
WOK846*	4 Hatch Farm Cottages, Sindlesham	Roadside	Y	27	29	27.4	25.6	21.6
WOK847*	Wellness Clinic, High Street, Wargrave	Roadside		34	-	-	-	-
WOK850*	19 High Street, Twyford 1	Roadside	Y	46	43	44.9	42.6	42.8
WOK857*	1 Rectory Road, Wokingham	Roadside	Y	41	45	49.1	39.3	39.9
WOK861*	Mill Lane (by bridge), Sindlesham	Roadside	N	42	29	34.1	26.3	23.2
WOK863*	3 Wargrave Road, Twyford	Roadside	Y	35	33.3	36.7	34.6	30.7
WOK864*	1 Waltham Road, Twyford 1	Roadside	N	42	43	41.8	35.7	36.9
WOK866*	58 Denmark Street, Wokingham	Roadside	N	31	32	27.6	23.6	25.3
WOK867*	21 Denmark Street, Wokingham	Roadside	Y	28	28.2	27.6	23.1	23.7
WOK868ª	59 London Road, Wokingham	Roadside	Y	31	27.8	30.5	30.3	27.7
WOK869*	Muille 26, High Street, Twyford	Roadside	N	32	28.1	30.7	28.1	27.1
WOK870*	Hunt&Nash, Church Street, Twyford	Roadside	Y	33	33	34	29.3	29.0
WOK871*	15 London Road, Twyford 1	Roadside	N	32	30.7	32.3	27.4	27.3
WOK872*	Old Registry Office, Reading Road, Wokingham	Roadside	Y	32	36.4	38.1	33.2	32.4
WOK873*	27 The Terrace, Wokingham	Roadside	N	27	27	26.5	24.6	24.7
WOK874	Corner Broad St & Rose St, Wokingham	Roadside	Y	23	24.9	26.9	27.9	28.9
WOK875*	15 London Road Twyford 2	Roadside	N	31	30.7	31.8	27.4	27.3
WOK876*	15 London Road, Twyford 3	Roadside	N	32	30.7	32.7	28.4	27.3
WOK877*	Almshouses, London Road, Twyford	Roadside	N	27	25.9	26.9	22.9	22.9

Site ID	Site Name	Site Type	Site Type	Within		ŀ	Annual Mean	(µg/m³)	
			AQMA	2015	2016	2017	2018	2019	
WOK878*	17 Wargrave Road, Twyford	Roadside	N	28	27.4	30.2	25.2	25.7	
WOK879*	Peach Street Unit 1	Roadside	Y	38	35.5	39.0	33.4	36.7	
WOK880*	Peach Street Unit 2	Roadside	Y	36	35.5	39.7	33.4	36.7	
WOK881*	Peach Street Unit 3	Roadside	Y	38	35.5	38.9	33.4	36.7	
WOK882	341 Whitley Wood Lane, Shinfield	Roadside	N	38	35.5	38.9	33.4	36.7	
WOK 883	Evendons Primary School	Roadside	N	-	-	-	31.1	29.1	
WOK 884		Roadside	Y	-	-	-	43	30.5	
WOK 885		Roadside	N	-	-	-		30.5	
WOK 886		Roadside	N	-	-	-	-	30.5	
WOK 887	19 High Street, Twyford 2	Roadside	Y	-	-	-	42.6	42.8	
WOK 888	19 High Street, Twyford 3	Roadside	Y	-	-	-	42.6	42.8	
WOK 889ª	1 Waltham Road, Twyford 2	Roadside	N	-	-	-	35.3	37.9	
WOK 890	1 Waltham Road,Twyford 3	Roadside	N	-	-	-	35.6	36.2	
WOK 891		Roadside	N	-	-	-	-	22.2	
	NAQO	·				40	· · · · · · · · · · · · · · · · · · ·		

2015 – 2019 data taken from the WBC Air Quality Annual Status Report for 2019 (WBC, 2020).

^aLow data capture. * Used for model verification.

5.2 Reference Case

- 5.2.1 The Reference Case includes all committed growth up to 2038 which results from development in neighbouring authorities and growth within Wokingham Borough, excluding likely growth associated with emerging Local Plan. The Reference Case therefore presents a picture of air quality conditions, prior to the addition of the potential growth scenarios as part of the LPU.
- 5.2.2 Predicted concentrations of NO₂, PM₁₀ and PM_{2.5} at the ten receptor locations with the highest concentrations are presented in **Table 5-2** to **Table 5-4** below.

Receptor	Reference Case Annual Average NO₂ (μg/m³)
WW_6	28.2
WW_194	24.1
TWY_76	23.0
WW_204	22.9
TWY_30	22.1
WW_25	22.1
TWY_75	21.9
WW_377	21.9
WW_374	21.8
TWY_77	21.7
Air Quality Objective (AQO)	40

Table 5-2 Highest Ten Predicted Annual Average Concentrations of NO₂ (µg/m³)

Table 5-3 Highest Ten Predicted Annual Average Concentrations of PM10 (µg/m³)

Receptor	Reference Case Annual Average PM ₁₀ (μg/m ³)		
WW_6	23.3		
WW_194	21.7		
TWY_76	21.5		
TWY_77	21.2		
WW_25	21.0		
WW_16	20.2		
WW_5	20.0		
WW_171	20.0		
TWY_75	19.9		
WW_407	19.9		
Air Quality Objective (AQO)	40		

Table 5-4 Highest Ten Predicted Annual Average Concentrations of PM2.5 (µg/m³)

Receptor	Reference Case Annual Average PM₂.₅ (μg/m³)
WW_6	14.7
WW_194	14.1
WW_25	13.6
TWY_76	13.3
WW_407	13.2
WW_16	13.1

Receptor	Reference Case Annual Average PM _{2.5} (μg/m³)	
TWY_77	13.1	
WW_204	13.0	
WW_355	12.9	
WW_203	12.8	
Air Quality Objective (AQO)	20	

5.2.3 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations in 2038, without the growth scenarios are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.

5.3 LPU Growth Scenario 3d

- 5.3.1 LPU Growth Scenario 3d considers the impacts associated with 4,450 dwellings at Hall Farm, 354,000m² of employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and a new M4 junction.
- 5.3.2 Predicted concentrations of NO₂, PM₁₀ and PM_{2.5} at the ten receptor locations with the highest concentrations as a result of the Local Plan developments tested in Scenario 3d are presented in **Table 5-5** to **Table 5-7**.

Receptor	Scenario 3d Annual Average NO ₂ (µg/m³)
WW_6	27.7
TWY_76	23.4
TWY_30	23.2
TWY_77	22.1
TWY_75	22.1
WW_407	22.0
WW_374	22.0
WW_377	21.8
TWY_34	21.6
WW_204	21.4
Air Quality Objective (AQO)	40

Table 5-5 Sc3d: Highest Ten Predicted Annual Average Concentrations of NO₂ (µg/m³) at Receptors

Table 5-6 Sc3d: Highest Ten Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Receptor	Scenario 3d Annual Average PM₁₀ (μg/m³)
WW_6	22.8
TWY_76	21.7
TWY_77	21.4
TWY_75	20.0

Receptor	Scenario 3d Annual Average PM₁₀ (μg/m³)
WW_194	19.9
WW_5	19.9
WW_25	19.9
WW_16	19.8
WW_407	19.5
TWY_34	19.5
Air Quality Objective (AQO)	40

Table 5-7 Sc3d: Highest Ten Predicted Annual Average Concentrations of PM2.5 (µg/m³) at Receptors

Receptor	Scenario 3d Annual Average PM _{2.5} (µg/m³)
WW_6	14.4
TWY_75	13.4
TWY_75	13.2
WW_191	13.1
WW_403	13.0
WW_20	12.9
WW_10	12.8
WW_197	12.8
WW_347	12.7
TWY_66	12.7
Air Quality Objective (AQO)	20

- 5.3.3 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations with Growth Scenario 3d are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below $60\mu g/m^3$ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below $32 \ \mu g/m^3$ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 5.3.4 The receptors with the largest change in pollutant concentrations in relation to the reference case are shown in **Table 5-8** to **Table 5-10**.

Table 5-8 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of NO2 (µg/m³) at Receptors

Receptor	Reference Case	Scenario 3d	Change (µg/m³)	Change as % of AQO
TWY_30	22.1	23.2	1.1	2.7%
WW_37	15.4	16.3	0.9	2.4%
WW_38	15.4	16.4	0.9	2.3%
WW_34	15.0	15.9	0.9	2.3%
TWY_3	15.8	16.7	0.9	2.1%
WS_117	12.7	13.4	0.8	1.9%
WT_22	16.2	17.0	0.8	1.9%
WS_394	10.7	11.4	0.7	1.9%
TWY_32	19.8	20.5	0.7	1.8%

Receptor	Reference Case	Scenario 3d	Change (µg/m³)	Change as % of AQO
WW_39	16.0	16.7	0.7	1.8%
AQO	40			

Table 5-9 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Receptor	Reference Case	Scenario 3d	Change(µg/m³)	Change as % of AQO
TWY_3	17.0	17.5	0.5	1.2%
WW_37	17.0	17.5	0.4	1.1%
WW_34	17.1	17.5	0.4	1.1%
WW_38	17.0	17.5	0.4	1.1%
TWY_30	18.4	18.9	0.4	1.1%
TWY_4	16.4	16.8	0.3	0.9%
TWY_45	17.2	17.6	0.3	0.8%
TWY_28	16.2	16.5	0.3	0.8%
TWY_24	17.5	17.8	0.3	0.8%
TWY_32	18.1	18.4	0.3	0.8%
AQO	4	40		

Table 5-10 Sc3d: Highest Ten Changes in Predicted Annual Average Concentrations of PM_{2.5} (µg/m³) at Receptors

Receptor	Reference Case	Scenario 3d	Change (µg/m³)	Change as % of AQO
TWY_3	11.1	11.3	0.3	1.3%
WW_37	11.6	11.9	0.2	1.2%
WW_34	11.6	11.8	0.2	1.2%
WW_38	11.6	11.9	0.2	1.2%
TWY_30	11.9	12.2	0.2	1.2%
TWY_4	10.8	11.0	0.2	1.0%
TWY_32	11.7	11.8	0.2	0.9%
TWY_28	10.7	10.8	0.2	0.9%
TWY_45	11.2	11.4	0.2	0.9%
TWY_24	11.4	11.5	0.2	0.9%
AQO	2	20		

5.3.5 The largest changes in annual mean NO₂ concentrations range from 0.7 to 0.8 μ g/m³ at five receptors and are 1.1 μ g/m³ at one receptor. The largest changes in annual mean PM₁₀ concentrations range from 0.3 to 0.4 μ g/m³ at nine receptors and are 0.5 μ g/m³ at one receptor. With regards to PM_{2.5} concentrations, the largest changes range from 0.2 μ g/m³ at nine receptors to 0.3 μ g/m³ at one receptor.

5.4 LPU Growth Scenario 6a

5.4.1 LPU Growth Scenario 6a considers the impacts associated with 4,450 dwellings at Hall Farm, no additional employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.

5.4.2 Predicted concentrations of NO₂, PM₁₀ and PM_{2.5} at the 10 receptor locations with the highest concentrations as a result of the Local Plan developments tested in Scenario 6a are presented in **Table 5-11** to **Table 5-13**.

Table 5-11 Sc6a Highest Ten Predicted Annual Average Concentrations of NO2 (µg/m³) at Receptors

Receptor	Scenario 6a Annual Average NO₂ (μg/m³)
WW_6	28.4
WW_194	24.6
TWY_76	23.1
WW_204	22.7
TWY_30	22.5
TWY_75	22.1
WW_377	22.0
WW_374	22.0
WW_25	21.9
TWY_77	21.8
Air Quality Objective (AQO)	40

Table 5-12 Sc6a Highest Ten Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Receptor	Scenario 6a Annual Average PM10 (μg/m³)
WW_6	23.4
WW_194	21.9
TWY_76	21.6
TWY_77	21.2
WW_25	20.9
WW_16	20.3
WW_171	20.1
WW_5	20.1
TWY_75	20.0
WW3	19.9
Air Quality Objective (AQO)	40

Table 5-13 Sc6a Highest Ten Predicted Annual Average Concentrations of PM2.5 (µg/m³) at Receptors

Receptor	Scenario 6a Annual Average PM _{2.5} (μg/m³)
WW6	14.7
WW_193	14.2
WW_23	13.5
TWY_73	13.3
WW_403	13.2
WW_11	13.1
TWY_71	13.1
WW_197	13.1

Receptor	Scenario 6a Annual Average PM₂.₅ (μg/m³)
WW_347	12.9
WW_194	12.9
Air Quality Objective (AQO)	20

- 5.4.3 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations with Scenario 6a, are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 5.4.4 Additionally, receptors with the largest change in pollutant concentrations in relation to the reference case are shown in Table 5-14 to Table 5-16.

Receptor	Reference Case	Scenario 6a	Change (µg/m³)	Change as % of AQO
WS_83	12.5	13.6	1.1	2.6%
	18.8	19.5	0.8	1.9%
WW_154	16.4	17.1	0.7	1.8%
WS_82	12.1	12.8	0.7	1.7%
WS_207	12.1	12.8	0.7	1.7%
WW_176	19.2	19.8	0.6	1.5%
WS_146	11.7	12.3	0.6	1.5%
WS_50	15.5	16.1	0.5	1.4%
WS_50	15.5	16.1	0.5	1.4%
WS_148	10.4	10.9	0.5	1.3%
AQO	40			

Table 5-14 Sc6a Highest Ten Changes in Predicted Annual Average Concentrations of NO₂ (µg/m³) at Receptors

Table 5-15 Sc6a Highest Ten Changes in Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Receptor	Reference Case	Scenario 6a	Change (µg/m³)	Change as % of AQO
WS_83	16.5	17.0	0.5	1.4%
WS_82	16.2	16.5	0.3	1.0%
WS_50	18.5	18.8	0.3	0.9%
WW_176	18.1	18.5	0.3	0.8%
WS_117	16.0	16.2	0.3	0.8%
WS_207	14.8	15.1	0.2	0.7%
WS_146	15.1	15.3	0.2	0.6%
WW_194	21.7	21.9	0.2	0.6%
WS_145	14.1	14.3	0.2	0.5%
WT_50	18.1	18.3	0.2	0.5%
AQO	40			

Receptor	Reference Case	Scenario 6a	Change (µg/m³)	Change as % of AQO
WS_83	10.6	10.9	0.3	1.6%
WS_82	10.4	10.6	0.2	1.1%
WS_50	11.7	11.9	0.2	1.0%
WW_176	11.8	12.0	0.2	0.9%
WS_117	10.3	10.4	0.1	0.9%
WS_207	9.6	9.8	0.1	0.8%
WS_146	9.7	9.8	0.1	0.7%
WW_194	14.1	14.2	0.1	0.7%
WS_145	9.2	9.3	0.1	0.6%
WS_148	9.3	9.5	0.1	0.6%
AQO	20			

Table 5-16 Sc6a: Highest Ten Changes in Predicted Annual Average Concentrations of PM2.5 (µg/m³) at Receptors

5.4.5 The largest changes in annual mean NO₂ concentrations range from 0.5 to 0.7 μ g/m³ at eight receptors and are 0.8 μ g/m³ at one receptor and 1.1 μ g/m³ at one receptor. The largest changes in annual mean PM₁₀ concentrations range from 0.2 to 0.3 μ g/m³ at nine receptors and are 0.5 μ g/m³ at one receptor. With regards to PM_{2.5} concentrations, the largest changes range from 0.1 to 0.2 μ g/m³ at nine receptors to 0.3 μ g/m³ at one receptor.

5.5 LPU Growth Scenario 7a

- 5.5.1 LPU Growth Scenario 7a considers the impacts associated with 4,450 dwellings at Hall Farm, 100,000m² of science park type employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.
- 5.5.2 Predicted concentrations of NO₂, PM₁₀ and PM_{2.5} at the 10 receptor locations with the highest concentrations as a result of the LPU developments tested in Scenario 7a are presented in **Table 5-17** to **Table 5-19**.

Table 5-17 Sc7a: Highest Ten Predicted Annual Average Concentrations of NO2 (µg/m³) at Receptors

Receptor	Scenario 7a Annual Average NO₂ (μg/m³)
WW_6	28.9
WW_194	24.7
TWY_76	23.1
WW_204	22.8
TWY_30	22.5
WW_374	22.1
WW_377	22.1
TWY_75	22.1
WW_25	21.9
TWY_77	21.8
Air Quality Objective (AQO)	40

Receptor	Scenario 7a Annual Average PM₁₀ (µg/m³)
WW_6	23.7
WW_194	22.0
TWY_76	21.6
TWY_77	21.3
WW_25	20.9
WW_16	20.2
WW_5	20.2
WW_171	20.1
TWY_75	20.0
WW3	19.9
Air Quality Objective (AQO)	40

Table 5-18 Sc7a: Highest Ten Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Table 5-19 Sc7a: Highest Ten Predicted Annual Average Concentrations of PM_{2.5} (µg/m³) at Receptors

Receptor	Scenario 7a Annual Average PM _{2.5} (μg/m³)
WW_6	14.9
WW_193	14.3
WW_23	13.5
TWY_73	13.3
WW_403	13.2
TWY_72	13.1
WW_198	13.1
WW_9	13.1
WW_347	13.0
WW_194	12.9
Air Quality Objective (AQO)	20

- 5.5.3 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations with Scenario 7a are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 5.5.4 Receptors with the largest change in pollutant concentrations in relation to the reference case are shown in **Table 5-20** to **Table 5-22**.

Table 5-20 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of NO2 (µg/m³) at Receptors

Receptor	Reference Case	Scenario 7a	Change (µg/m³)	Change as % of AQO
WW_178	14.1	15.4	1.4	3.4%
WW_177	15.9	17.1	1.2	2.9%
WS_83	12.5	13.6	1.1	2.7%
WS_117	12.7	13.6	1.0	2.4%

Receptor	Reference Case	Scenario 7a	Change (µg/m³)	Change as % of AQO
WS_82	12.1	12.9	0.7	1.9%
WW_3	18.8	19.5	0.7	1.8%
WS_122	14.0	14.7	0.7	1.8%
WS_122	14.0	14.7	0.7	1.8%
WW_6	28.2	28.9	0.7	1.8%
WS_50	15.5	16.2	0.7	1.7%
AQO	40			

Table 5-21 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of PM₁₀ (µg/m³) at Receptors

Receptor	Reference Case	Scenario 7a	Change (µg/m³)	Change as % of AQO
WW_178	17.7	18.3	0.7	1.7%
WW_177	17.8	18.4	0.6	1.5%
WS_83	16.5	17.0	0.5	1.4%
WS_117	16.0	16.4	0.4	1.0%
WS_82	16.2	16.5	0.4	0.9%
WW_176	18.1	18.5	0.4	0.9%
WW_6	23.3	23.7	0.4	0.9%
WS_50	18.5	18.9	0.3	0.8%
WW_85	17.3	17.6	0.3	0.7%
WW_87	17.9	18.2	0.3	0.7%
AQO		40		

Table 5-22 Sc7a: Highest Ten Changes in Predicted Annual Average Concentrations of PM_{2.5} (µg/m³) at Receptors

Receptor	Reference Case	Scenario 7a	Change (µg/m³)	Change as % of AQO
WW_178	11.4	11.8	0.4	1.9%
WW_177	11.5	11.8	0.3	1.6%
WS_83	10.6	10.9	0.3	1.5%
WS_117	10.3	10.5	0.2	1.1%
WS_82	10.4	10.6	0.2	1.0%
WW_6	14.7	14.9	0.2	1.0%
WW_176	11.8	12.0	0.2	1.0%
WS_50	11.7	11.9	0.2	0.9%
WW_85	11.8	11.9	0.2	0.8%
WW_126	11.7	11.9	0.1	0.7%
AQO	20			

5.5.5 The largest changes in annual mean NO₂ concentrations range from 0.7 to 1.0 μ g/m³ at seven receptors, from 1.1 to 1.2 μ g/m³ at two receptors and are 1.4 μ g/m³ at one receptor. The largest changes in annual mean PM₁₀ concentrations range from 0.3 to 0.4 μ g/m³ at seven receptors, from 0.5 to 0.6 μ g/m³ at two receptors and are 0.7 μ g/m³ at one receptor. With regards to PM_{2.5} concentrations, the largest changes range from 0.1 to 0.3 μ g/m³ at nine receptors and are 0.4 μ g/m³ at one receptors.

5.6 Summary

- 5.6.1 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations in 2038, with LPU Growth Scenarios 3d, 6a or 7a are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 5.6.2 Therefore, it can be concluded that the LPU Growth Scenario 3d, 6a or 7a do not result unacceptable risks from air pollution and is therefore in accordance with the requirements of the NPPG.

6 Impacts at Ecological Receptors

6.1 Identified Ecological Receptors

6.1.1 The potential impact of traffic related emissions associated with the LPU Growth Scenarios have been assessed for the following Habitat Regulation Sites (i.e those within 200m of an 'affected road') as shown on **Figure 6-1**. **Table 6-1** details the Habitat Regulation Sites considered in the assessment, the habitat types within each site, and the critical loads used for each habitat types.

Habitat Regulations Site	Secondary Designation (within 200m of affected road)	Interest Feature	Assessed habitat type	Nitrogen Critical load (kgN/ha/yr)
	Broadmoor to Bagshot Woods and	Nightjar	Dry heaths	10 -20
	Heaths SSSI	Woodlark	Dry heaths	10 -20
Thames Basin	Sandhurst to Owlsmoor Bogs and Heaths SSS	Dartford Warbler	Dry heaths	10 -20
Heaths SPA ^(a)	Hazeley Heath SSSI			
	Bramshill SSSI			
	Castle Bottom to Yateley and Hawley Commons SSSI			
Windsor Forest and Great Park SAC		Old acidophilous oak woods with Quercus robur on sandy plains	Acidophiliois Quercus- dominated woodland	10 - 15
	Windsor Forest and Great Park SSSI	Atlantic acidophilous beech forests with llex and sometimes also Taxus baccata in the shrub layer (Quercion robori- petraeae or Ilici- Fagenion)	Fagus woodland	10 -20
		Violet click beetle Limoniscus violaceus	Broadleaved deciduous woodland	10 -20
	Risham Woods	Asperulo-Fagetum beech forests	Fagus woodland	10 -20
Chilterns Beechwoods SAC	Hollowhill and Pullingshill Woods SSSI	Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (*important orchid sites)	Sub-Atlantic semi-dry calcareous grassland	15 - 25
Thursley, Ash, Pirbright and Chobham SAC	Colony Bog and Bagshot Heath SSSI	Depressions on peat substrates of the Rhynchosporion	Valley mires, poor fens and transition mire)	10 - 15

Table 6-1 Identified Ecological Receptor's (Habitat Regulation Sites)

Habitat Regulations Site	Secondary Designation (within 200m of affected road)	Interest Feature	Assessed habitat type	Nitrogen Critical load (kgN/ha/yr)
	Broadmoor to Bagshot Woods and	Nightjar	Dry heaths	10 -20
	Heaths SSSI	Woodlark	Dry heaths	10 -20
Thames Basin Heaths SPA ^(a)	Sandhurst to Owlsmoor Bogs and Heaths SSS Hazeley Heath SSSI Bramshill SSSI Castle Bottom to Yateley and Hawley Commons SSSI	Dartford Warbler	Dry heaths	10 -20
	Chobham Common SSSI	North Atlantic wet heaths with Erica tetralix	Northern wet heath: Erica tetralix dominated wet heath	10 -20
1		European dry heath	Dry heaths	10 -20

- (a) Thames Basin Heaths SPA assessed as heathland habitat only (as opposed to coniferous woodland) on the basis that the site objective is to 'restore' and it is the heathland habitat that supports the Annex 1 bird species. Coniferous woodland within the Thames Basin Heaths SPA is considered as a land use subject to change, as opposed to a supporting habitat for maintenance or restoration.
- 6.1.2 Where changes in traffic flows (alone or in-combination) associated with the growth scenarios exceed the screening criteria (defined in paragraphs 4.3.4 to 4.3.8), modelling has been undertaken to quantify the changes in concentration of air pollutants and associated nitrogen (and acid) deposition (note these vary between scenarios).
- 6.1.3 At this stage, consideration of potential impacts has focussed on the predicted changes in annual average NOx concentrations and nitrogen deposition rates as these are considered to be the main determinants as to the acceptability of the impacts. Full results of the ecological receptors for each scenario are presented in **Appendix E** and an overview is presented below.
- 6.1.4 Further analysis of these results alongside consideration of ammonia and acid deposition would be provided to inform the assessment of Likely Significant Effect (LSE) and any required Habitat Regulation Assessment (HRA) of the future growth scenario.

6.2 LPU Growth Scenario 3d

6.2.1 LPU Growth Scenario 3d considers the impacts associated with 4,450 dwellings at Hall Farm, 354,000m² of employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and a new M4 junction.

Annual NOx Impacts

6.2.2 The predicted in-isolation NOx contributions associated with LPU Growth Scenario 3d are below 1% of the critical level at a majority (approximately 90%) of modelled receptors and reductions are predicted at approximately 20% of modelled receptors.

- 6.2.3 Where predicted in-isolation NOx contributions are in excess of 1% of the critical level beyond 5m from the boundary of the habitat site, the overall concentration does not exceed the critical level at the habitat regulations sites identified in Table 6-1, except for transects within the Thursley, Ash, Pirbright and Chobham SAC in proximity to the M3.
- 6.2.4 The in-combination NOx contributions exceed 1% of the critical level at a majority (approximately 70%) of modelled receptors in 2038 and reductions are predicted at approximately 20% of modelled receptors.
- 6.2.5 Whilst NOx impacts associated with LPU Growth Scenario 3d result in increases and decreases in excess of 1% of the critical level, there is a predicted decrease in NOx concentrations at all receptor locations over the assessed period.
- 6.2.6 This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle exhaust emissions and reduced background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from the potential growth under the LPU and other projects and plans within WSTM4.

Annual Nitrogen Deposition Impacts

- 6.2.7 The predicted in-isolation nitrogen deposition contributions associated with LPU Growth Scenario 3d are below 1% of the critical load at a majority (approximately 80%) of modelled receptors in 2038 and reductions are predicted at approximately 20% of modelled receptors
- 6.2.8 The in-combination contribution to nitrogen deposition exceeds 1% of the critical load at a majority (approximately 75%) of modelled receptors and reductions are predicted at approximately 20% of modelled receptors.
- 6.2.9 Nitrogen deposition rates at all locations remain in exceedance of the critical loads in all assessment years and nitrogen deposition associated with LPU Growth Scenario 3d results in increases and decreases in excess of 1% of the critical load.
- 6.2.10 Overall, there is a predicted decrease in nitrogen deposition rates at all receptor locations over the assessed period. This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from potential growth under the LPU and other projects and plans within WSTM4.

6.3 LPU Growth Scenario 6a

6.3.1 LPU Growth Scenario 6a considers the impacts associated with 4,450 dwellings at Hall Farm, no additional employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.

Annual NOx Impacts

- 6.3.2 The predicted in-isolation NOx contributions associated with LPU Growth Scenario 6a are below 1% of the critical level at a majority (approximately 90%) of modelled receptors in 2038 and reductions are predicted at approximately 20% of modelled receptors
- 6.3.3 Where predicted in-isolation NOx contributions are in excess of 1% of the critical level beyond 5m from the boundary of the habitat site, the overall concentration does not exceed the critical

level except for transects within the Thursley, Ash, Pirbright and Chobham SAC in proximity to the M3.

- 6.3.4 The in-combination NOx contributions exceed 1% of the critical level at a majority (approximately 70%) of modelled receptors and reductions are predicted at approximately 20% of modelled receptors.
- 6.3.5 Whilst NOx impacts associated with LPU Growth Scenario 6a result in increases and decreases in excess of 1% of the critical level, there is a predicted decrease in NOx concentrations at all receptor locations over the assessed period
- 6.3.6 This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle exhaust emissions and reduced background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from the potential growth under the LPU and other projects and plans within WSTM4.

Annual Nitrogen Deposition Impacts

- 6.3.7 The predicted in-isolation nitrogen deposition contributions associated with LPU Growth Scenario 6a are below 1% of the critical load at a majority (approximately 80%) of modelled receptors in 2038 and reductions are predicted at approximately 20% of modelled receptors.
- 6.3.8 The in-combination contribution to nitrogen deposition exceeds 1% of the critical load at a majority (approximately 75%) of modelled receptors and reductions are predicted. at approximately 20% of modelled receptors.
- 6.3.9 Nitrogen deposition rates at all locations remain in exceedance of the critical loads in all assessment years and nitrogen deposition associated with LPU Growth Scenario 6a results in increases and decreases in excess of 1% of the critical load.
- 6.3.10 Overall, there is a predicted decrease in nitrogen deposition rates at all receptor locations over the assessed period. This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from potential growth under the LPU and other projects and plans within WSTM4.

6.4 LPU Growth Scenario 7a

6.4.1 LPU Growth Scenario 7a considers the impacts associated with 4,450 dwellings at Hall Farm, 100,000m² of science park type employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall Farm to Lower Earley.

Annual NOx Impacts

- 6.4.2 The predicted in-isolation NOx contributions associated with LPU Scenario 7a are below 1% of the critical level at all modelled receptors and reductions are predicted.at approximately 90% of modelled receptors.
- 6.4.3 The in-combination NOx contributions exceed 1% of the critical level at approximately 50% of modelled receptors and reductions are predicted. at approximately 20% of modelled receptors.
- 6.4.4 This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle exhaust emissions and reduced

background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from the potential growth under the LPU and other projects and plans within WSTM4.

Annual Nitrogen Deposition Impacts

- 6.4.5 The predicted in-isolation nitrogen deposition contributions associated with LPU Scenario 7a are below 1% of the critical load at all modelled receptors and reductions are predicted at approximately 90% of modelled receptors.
- 6.4.6 The in-combination contribution to nitrogen deposition exceeds 1% of the critical load at a majority (approximately 60%) of modelled receptors and reductions are predicted at approximately 20% of modelled receptors.
- 6.4.7 Overall, there is a predicted decrease in nitrogen deposition rates at all receptor locations over the assessed period. This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from potential growth under the LPU and other projects and plans within WSTM4.

6.5 Summary

Growth Scenarios 3d and 6a

- 6.5.1 The predicted in-isolation impacts associated with Growth Scenario 3d and 6a exceed 1% of the relevant critical level or load (and the baseline widely exceeds the critical level/load) in the following areas:
 - Thursley, Ash, Pirbright & Chobham SAC:
 - Chobham Common SSSI in proximity to the M3 and the junction of the B383 and B386; and
 - Colony Bog and Bagshot Heat SSSI in proximity to the B3015 and M3.
 - Thames Basin Heaths SPA (in addition to those within the Thursley, Ash, Pirbright & Chobham SAC):
 - Hazeley Heath SSI in proximity to the B3011;
 - o Bramshill SSI in proximity to Bramshill Road and the B3016;
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the B3016 and Hawley Green Road; and
 - Broadmoor to Bagshot Woods and Heaths SSSI in proximity to Sandhurst Road.
 - Windsor Forest and Great Park SAC/SSSI in proximity to the B3022 and B383.
- 6.5.2 However, the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered, and these reductions more than offsets the predicted impacts resulting from the LPU Growth Scenarios in-isolation.
- 6.5.3 The predicted in-combination impacts associated Growth Scenarios 3d or 6a and other projects and plans exceed the 1% threshold for NOx and nitrogen deposition (and the baseline widely exceeds the critical level/load) in the following areas:

- Thursley, Ash, Pirbright & Chobham SAC:
 - Chobham Common SSSI in proximity to the M3 and the B386; and
 - o Colony Bog and Bagshot Heat SSSI in proximity to the B3015, A322 and M3.
- Thames Basin Heaths SPA (in addition to those within the Thursley, Ash, Pirbright & Chobham SAC):
 - Hazeley Heath SSI in proximity to the B3011;
 - o Bramshill SSI in proximity to the A30, A327, Bramshill Road and the B3016;
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the A30, B3016, B3272 and Hawley Green Road; and
 - Broadmoor to Bagshot Woods and Heaths SSSI in proximity to the A3095, B3348, A322, B3430 and Sandhurst Road.
- 6.5.4 However, the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered, and these reductions more than offsets the predicted impacts resulting from the LPU Growth Scenarios in-combination with other projects and plans.
- 6.5.5 The predicted in-combination impacts associated with Growth Scenarios 3d or 6a and other projects and plans results in decreased impacts at Chilterns Beechwoods SAC and Windsor Forest and Great Park SAC.

Growth Scenario 7a

- 6.5.6 The changes in traffic flows associated with Growth Scenario 7a do not exceed the screening criteria (defined in paragraphs 4.3.4 to 4.3.8) for roads in proximity to Thursley, Ash, Pirbright & Chobham SAC, Chilterns Beechwoods SAC and Windsor Forest and Great Park SAC.
- 6.5.7 The predicted in-isolation impacts associated with Growth Scenario 7a result in decreased impacts in the following areas of the Thames Basin Heaths SPA:
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the A30; and
 - Broadmoor to Bagshot Woods and Heaths SSSI in proximity to the A3095, B3348 and B3430.

7 Summary and Conclusions

- 7.1.1 Stantec have undertaken an assessment to understand the impact on Air Quality (at both human and ecological receptors) of future housing and employment growth and the resultant changes in traffic flows on the highway network. The outputs from the assessment will be used as part of the evidence base to support the preparation of the LPU.
- 7.1.2 A number of scenarios have been appraised to assess the impact of local growth on air quality. These will then identify any implications of development and consequently help ascertain which sites may be suitable for allocation from an Air Quality perspective and any works that are necessary to mitigate impacts.
- 7.1.3 The following scenarios have been subject to Air Quality assessment:
 - Scenario 3d 4,450 dwellings at Hall Farm, 354,000m² of employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and a new M4 junction.
 - Scenario 6a 4,450 dwellings at Hall Farm, no employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall farm to Lower Earley.
 - Scenario 7a 4,450 dwellings at Hall Farm, 100,000m² of science park type employment at Four Valleys, 920 dwellings at South Wokingham extension, associated mitigation for both strategic sites, smaller development parcels and no M4 junction, but a bridge connecting Hall farm to Lower Earley.

Air Quality Impacts

- 7.1.4 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations without the potential growth under the LPU are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 7.1.5 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations with LPU Growth Scenarios 3d, 6a or 7a are below the relevant NAQOs at all existing receptors. Furthermore, predicted annual mean NO₂ concentrations are below 60µg/m³ at all receptors, indicating that exceedances of the 1-hour mean NO₂ NAQO are not likely, and the predicted annual mean PM₁₀ concentrations are below 32 µg/m³ at all receptors, indicating that exceedances of the 24-hour mean PM₁₀ NAQO are not likely.
- 7.1.6 Overall, with respect to the impact on NO₂, PM₁₀ and PM_{2.5} concentrations, there are considered to be no substantial differences between the predicted concentrations at receptors as a result of the three LPU Growth Scenarios.

Ecological Impacts

- 7.1.7 The predicted in-isolation impacts associated with Growth Scenario 3d and 6a exceed 1% of the relevant critical level or load (and the baseline widely exceeds the critical level/load) in the following areas:
 - Thursley, Ash, Pirbright & Chobham SAC:

- Chobham Common SSSI in proximity to the M3 and the junction of the B383 and B386; and
- Colony Bog and Bagshot Heat SSSI in proximity to the B3015 and M3.
- Thames Basin Heaths SPA (in addition to those within the Thursley, Ash, Pirbright & Chobham SAC):
 - Hazeley Heath SSI in proximity to the B3011;
 - o Bramshill SSI in proximity to Bramshill Road and the B3016;
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the B3016 and Hawley Green Road; and
 - o Broadmoor to Bagshot Woods and Heaths SSSI in proximity to Sandhurst Road.
- Windsor Forest and Great Park SAC/SSSI in proximity to the B3022 and B383.
- 7.1.8 The predicted in-combination impacts associated Growth Scenarios 3d or 6a and other projects and plans exceed the 1% threshold for NOx and nitrogen deposition (and the baseline widely exceeds the critical level/load) in the following areas:
 - Thursley, Ash, Pirbright & Chobham SAC:
 - Chobham Common SSSI in proximity to the M3 and the B386; and
 - Colony Bog and Bagshot Heat SSSI in proximity to the B3015, A322 and M3.
 - Thames Basin Heaths SPA (in addition to those within the Thursley, Ash, Pirbright & Chobham SAC):
 - Hazeley Heath SSI in proximity to the B3011;
 - o Bramshill SSI in proximity to the A30, A327, Bramshill Road and the B3016;
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the A30, B3016, B3272 and Hawley Green Road; and
 - Broadmoor to Bagshot Woods and Heaths SSSI in proximity to the A3095, B3348, A322, B3430 and Sandhurst Road.
- 7.1.9 The predicted in-combination impacts associated with Growth Scenarios 3d or 6a and other projects and plans results in decreased impacts at Chilterns Beechwoods SAC and Windsor Forest and Great Park SAC.
- 7.1.10 The changes in traffic flows associated with Growth Scenario 7a do not exceed the screening criteria (defined in paragraphs 4.3.4 to 4.3.8) for roads in proximity to Thursley, Ash, Pirbright & Chobham SAC, Chilterns Beechwoods SAC and Windsor Forest and Great Park SAC.
- 7.1.11 The predicted in-isolation impacts associated with Growth Scenario 7a result in decreased impacts in the following areas of the Thames Basin Heaths SPA:
 - Castle Bottom to Yateley and Hawley Commons SSSI in proximity to the A30; and
 - Broadmoor to Bagshot Woods and Heaths SSSI in proximity to the A3095, B3348 and B3430.
- 7.1.12 Overall, there is a predicted decrease in nitrogen deposition rates at all receptor locations between the base year and future scenarios This predicted decrease is a result of the methodology applied (as detailed in Section 4) which accounts for a degree of future decreases in vehicle NOx emissions and reduced NOx background concentrations (by applying data for 2030) which are considered reasonably certain to be delivered. These reductions more than offset the predicted impacts due to forecast growth in traffic resulting from potential growth under the LPU in-isolation and in-combination with other projects and plans within WSTM4.

7.1.13 Further analysis of the effects of these contributions, both alone and in-combination (as well as of ammonia and acid deposition) will be undertaken as part the Habitat Regulation Assessment (HRA) for the Revised Growth Scenario to determine whether the predicted impacts have the potential to result in a Likely Significant Effect (LSE).

References

Air Quality Consultants Ltd. (2020a). 'Nitrogen Oxides Trends in the UK 2013 to 2019'

Air Quality Consultants (2020c). 'Calculator for Road Emissions of Ammonia (CREAM) v1A.' Available at: <u>https://www.aqconsultants.co.uk/resources</u>

Air Pollution Information System (APIS) (2022). The UK Air Pollution Information System. Available at: <u>http://www.apis.ac.uk/</u>

Department of the Environment, Food and Rural Affairs (DEFRA) in partnership with the Scottish Executive, The National Assembly for Wales and the Department of the Environment for Northern Ireland (2007). '*The Air Quality Strategy for England, Scotland, Wales, Northern Ireland*' HMSO, London.

Department of the Environment, Food and Rural Affairs (DEFRA) (2018). 'UK Plan for tackling RoadsideNitrogenDioxideConcentrations:DetailedPlan'.Availableat:https://www.gov.uk/government/publications/air-quality-plan-for-nitrogen-dioxide-no2-in-uk-2017

Department of the Environment, Food and Rural Affairs (DEFRA) (2019a). 'Clean Air Strategy 2019'.

Department of the Environment, Food and Rural Affairs (DEFRA) (2020a) '2020 NO₂ and PM Projections Data (2018 Reference Year)' [online] Available at: https://uk-air.defra.gov.uk/library/no2ten/2020-no2-pm-projections-from-2018-data

Department of the Environment, Food and Rural Affairs (DEFRA) (2020b). '2018 Based Background Maps

Department of the Environment, Food and Rural Affairs (DEFRA) (2020c). '*NO_x to NO₂ Conversion* Spreadsheet' [online] Available at: <u>https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html#NOxNO2calc</u>

Department of the Environment, Food and Rural Affairs (DEFRA) (2020d). '*Biodiversity 2020: A strategy* for England's wildlife and ecosystem services'

Department of the Environment, Food and Rural Affairs (DEFRA) (2021a). 'Local Air Quality Management Technical Guidance (TG16)'. April 2021.

Department of the Environment, Food and Rural Affairs (DEFRA) (2021b). '*Emissions Factor Toolkit (Version 11.0*)' Online, available at: <u>https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html</u>

Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (the Habitats Directive)

Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe

Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds.

Environment Act 1995, Part IV.

IAQM (2020) A guide to the Assessment of Air Quality Impacts on Designated Nature Conservation Sites – version 1.1. London

Chapman, C & Kite, B (2020). '*Guidance on Decision-Making Thresholds for Air Pollution*'. JNCC Report No. 696 (Main Report), JNCC, Peterborough.

Ministry of Housing, Communities & Local Government (2021). '*National Planning Policy Framework*'. Available at: <u>https://www.gov.uk/government/publications/national-planning-policy-framework--</u> <u>2#history</u>

Natural England (NE) (2018). Natural England's approach to advising competent authorities on the assessment of road traffic emissions under the Habitats Regulations. Version: June 2018.

Planning Practice Guidance (2014). 'Air Quality'.

Statutory Instrument 2000, No. 921, 'The Air Quality (England) Regulations 2000' HMSO, London.

Statutory Instrument 2000, c. 37, 'Countryside and Rights of Way Act 2000' HMSO, London.

Statutory Instrument 2002, No. 3034, 'The Air Quality (England) (Amendment) Regulations 2002' HMSO, London.

Statutory Instrument 2010, No. 1001, 'The Air Quality Standards Regulations 2010' HMSO, London.

Statutory Instrument 2016, No. 1184, 'The Air Quality Standards (Amendment) Regulations 2016' HMSO, London.

Statutory Instruments 2019, No. 74, '*The Air Quality (Amendment of Domestic Regulations) (EU Exit) Regulations 2019*' HMSO, London

Statutory Instruments 2019, No. 0000, 'The Conservation of Habitats and Species (Amendment) (EU Exit) Regulations 2019' HMSO, London

Statutory Instruments 2020, No. 131, 'The Environment (Miscellaneous Amendments) (EU Exit) Regulations 2020' HMSO, London

Statutory Instruments 2021, c. 30, 'Environment Act 2021' HMSO, London

Statutory Instrument 2017, No. 1012, '*The Conservation of Habitats and Species Regulations 2017*' HMSO, London.

Appendix A Glossary

Abbreviations	Meaning
AADT	Annual Average Daily Traffic
APIS	Air Pollution Information System
AQMA	Air Quality Management Area
BFC	Bracknell Forest Council
DEFRA	Department for Environment, Food and Rural Affairs
DN	Do Nothing
DM	Do Minimum
DS	Do Something
Diffusion Tube	A passive sampler used for collecting NO ₂ in the air
EFT	Emission Factor Toolkit
EPUK	Environmental Protection UK
HDC	Hart District Council
HRA	Habitat Regulation Assessment
HDV	Heavy Duty Vehicle; a vehicle with a gross vehicle weight greater than 3.5 tonnes. Includes Heavy Goods Vehicles and buses
IAQM	Institute of Air Quality Management
LPU	Local Plan Update
NAEI	National Atmospheric Emission Inventory
NE	Natural England
NAQO	National Air Quality Objective as set out in the Air Quality Strategy and the Air Quality Regulations
NO ₂	Nitrogen Dioxide
NOx	Oxides of nitrogen generally considered to be nitric oxide and NO ₂ . Its main source is from combustion of fossil fuels, including petrol and diesel used in road vehicles
NPPF	National Planning Policy Framework
PM10/PM2.5	Small airborne particles less than 10/2.5 μm in diameter
PPG	Planning Practice Guidance
RBC	Reading Borough Council
RBWM	Royal Borough of Windsor Maidenhead
Receptor	A location where the effects of pollution may occur
SAC	Special Area of Conservation
SPA	Special Protection Area
SSSI	Site of Scientific Special Interest
UNECE	United Nations Economic Commission for Europe
WBC	Wokingham Borough Council
WBDC	West Berkshire District Council
WSTM	Wokingham Strategic Transport Model

Appendix B Model Inputs and Results Processing

Summary of Model Inputs

Meteorological Data	2015 hourly meteorological data from Farnborough station has been used in the model.
ADMS	Version 5.0.0.1
Time Varying Emission Factors	Based on Department for Transport statistics. Table TRA0307. Motor vehicle traffic distribution by time of day and day of the week on all roads, Great Britain: 2015
Latitude	52°
Minimum Monin-Obukhov length	A value of 10 for 'cities and large towns' was used to represent the modelled area and the meteorological station site.
Urban Canopy	ADMS Urban Canopy flow model option was used (human receptors only) to calculate the changes in vertical profiles of velocity and turbulence caused by the presence of buildings in the area. Building heights were obtained from OS MasterMap.
Emission Factor Toolkit (EFT)	V11 (DEFRA, 2021b)
NOx to NO ₂ Conversion	NOx to NO ₂ calculator version 8.1, August 2020 (DEFRA, 2020c)
Background Maps	2018 reference year background maps (DEFRA, 2020b)

Figure C-1: Windrose for Farnborough (2015)

Appendix C Model Verification (Human Receptors)

NO₂

Most NO₂ is produced in the atmosphere by the reaction of nitric oxide (NO) with ozone. It is therefore most appropriate to verify the model in terms of primary pollutant emission of nitrogen oxides (NOx = NO + NO₂). The model has been run to predict the 2015 annual mean road-NOx contribution at the monitoring locations identified in Paragraph **4.2.14** and shown in **Figure 5-1**.

The verification process for human receptors comprised four different zones determine don the basis of the site environment and the following verification factors determined as summarised in the following sections:

- Zone A: 4.90;
- Zone B: 1.72;
- Zone C: 1; and
- Zone D: 1.47.

Verification Zone A:

A primary adjustment factor of **4.9036** has been determined as the slope of the best fit line between the modelled road NOx contribution and the 'measured' road-NO_x (which is calculated from the measured and background NO₂ concentrations within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e)), forced through zero (**Figure C-1**). This factor has then been applied to the raw modelled road-NO_x concentration to provide adjusted modelled road-NO_x concentrations.

Figure C-1 Measured and Unadjusted Road-NO_x Comparison

The total NO₂ concentrations have then been determined by combining the adjusted modelled road-NO_x concentrations with the background NO₂ concentration within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e). A secondary adjustment factor of **0.9978** has then been calculated as the slope of the best fit line applied to the adjusted data and forced through zero (**Figure C-2**).

Figure C-3 compares final adjusted modelled total NO₂ at each of the monitoring sites, to measured total NOx and shows the 1:1 relationship, as well as $\pm 10\%$ and $\pm 25\%$ of the 1:1 line.

Figure C-3 Measured and Final Adjusted Modelled NO₂ Comparison

The calculated adjustment factors imply that overall, the model has under-predicted the road-NO_x contribution. This is a common experience with this and most other models. The calculated Root Mean Square Error (RMSE) for this verification $(5.1 \ \mu g/m^3)$ lies within the range considered to be acceptable by DEFRA (DEFRA, 2018a) (4 – 10).

Verification Zone B:

A primary adjustment factor of **1.7174** has been determined as the slope of the best fit line between the modelled road NOx contribution and the 'measured' road-NO_x (which is calculated from the measured and background NO₂ concentrations within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e)), forced through zero (**Figure C-4**). This factor has then been applied to the raw modelled road-NO_x concentration to provide adjusted modelled road-NO_x concentrations.

Figure C-4 Measured and Unadjusted Road-NO_x Comparison

The total NO₂ concentrations have then been determined by combining the adjusted modelled road-NO_x concentrations with the background NO₂ concentration within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e). A secondary adjustment factor of **1.0051** has then been calculated as the slope of the best fit line applied to the adjusted data and forced through zero (**Figure C-5**).

Figure C-5 Measured and Primary Adjusted Modelled NO₂ Comparison

Figure C-6 compares final adjusted modelled total NO₂ at each of the monitoring sites, to measured total NOx and shows the 1:1 relationship, as well as $\pm 10\%$ and $\pm 25\%$ of the 1:1 line.

Figure C-6 Measured and Final Adjusted Modelled NO₂ Comparison

The calculated adjustment factors imply that overall, the model has under-predicted the road-NO_x contribution. This is a common experience with this and most other models. The calculated Root Mean

Square Error (RMSE) for this verification (4.1 μ g/m³) lies within the range considered to be acceptable by DEFRA (DEFRA, 2018a) (4 – 10).

Verification Zone C:

A primary adjustment factor of **0.8645** has been determined as the slope of the best fit line between the modelled road NOx contribution and the 'measured' road-NO_x (which is calculated from the measured and background NO₂ concentrations within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e)), forced through zero (**Figure C-7**). A factor of 1 has been applied to the raw modelled road-NO_x concentration to provide adjusted modelled road-NO_x concentrations.

Figure C-7 Measured and Unadjusted Road-NOx Comparison

The total NO₂ concentrations have then been determined by combining the adjusted modelled road-NO_x concentrations with the background NO₂ concentration within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e). A secondary adjustment factor of **0.9953** has then been calculated as the slope of the best fit line applied to the adjusted data and forced through zero (**Figure C-8**).

Figure C-8 Measured and Primary Adjusted Modelled NO₂ Comparison

Figure C-9 compares final adjusted modelled total NO₂ at each of the monitoring sites, to measured total NOx and shows the 1:1 relationship, as well as $\pm 10\%$ and $\pm 25\%$ of the 1:1 line.

Figure C-9 Measured and

Final Adjusted Modelled NO2 Comparison

The calculated adjustment factors imply that overall, the model has under-predicted the road-NO_x contribution. This is a common experience with this and most other models. The calculated Root Mean Square Error (RMSE) for this verification ($4.7 \mu g/m^3$) lies within the range considered to be acceptable by DEFRA (DEFRA, 2018a) (4 – 10).

Verification Zone D:

A primary adjustment factor of **1.4719** has been determined as the slope of the best fit line between the modelled road NOx contribution and the 'measured' road-NO_x (which is calculated from the measured and background NO₂ concentrations within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e)), forced through zero (**Figure C-10**). This factor has then been applied to the raw modelled road-NO_x concentration to provide adjusted modelled road-NO_x concentrations.

Figure C-10 Measured and Unadjusted Road-NO_x Comparison

The total NO₂ concentrations have then been determined by combining the adjusted modelled road-NO_x concentrations with the background NO₂ concentration within DEFRA's NO_x from NO₂ calculator (DEFRA, 2019e). A secondary adjustment factor of **1.008** has then been calculated as the slope of the best fit line applied to the adjusted data and forced through zero (**Figure C-11**).

Figure C-11 Measured and Primary Adjusted Modelled NO₂ Comparison

Figure C-12 compares final adjusted modelled total NO₂ at each of the monitoring sites, to measured total NOx and shows the 1:1 relationship, as well as $\pm 10\%$ and $\pm 25\%$ of the 1:1 line.

Adjusted Modelled NO₂ (µg/m³)

Figure C-12 Measured and Final Adjusted Modelled NO2 Comparison

The calculated adjustment factors imply that overall, the model has under-predicted the road-NO_x contribution. This is a common experience with this and most other models. The calculated Root Mean Square Error (RMSE) for this verification $(3.3 \ \mu g/m^3)$ lies within the range considered to be acceptable by DEFRA (DEFRA, 2018a) (4 – 10).

Appendix D Model Verification (Ecological Receptors)

NO₂

A separate verification study was undertaken utilising diffusion tubes in the neighbouring borough of Bracknell Forest, given the lack of suitable and representative sites of roads adjacent to the designated sites within WBC. The following nitrogen dioxide monitoring sites were used:

- 58xyz Pine View, Bracknell Road;
- 90xyz Dive Shop, Bracknell Road;
- 91xyz The Mount, Bracknell Road;
- 102xyz 28 Southwold; and
- 105xyz 69 Quintiles.

A primary adjustment factor of **2.7847** has been determined as the slope of the best fit line between the modelled road NOx contribution and the 'measured' road-NOx (which is calculated from the measured and background NO2 concentrations within DEFRA's NOx from NO₂ calculator (DEFRA, 2019e)), forced through zero (**Figure D-1**). This factor has then been applied to the raw modelled road-NOx concentration to provide adjusted modelled road-NOx concentrations.

Figure D-1 Measured and Primary Adjusted Modelled NO₂ Comparison

The total NO₂ concentrations have then been determined by combining the adjusted modelled road-NO_x concentrations with the background NO₂ concentration within DEFRA's NO_x from NO₂ calculator

(DEFRA, 2019e). A secondary adjustment factor of **0.9925** has then been calculated as the slope of the best fit line applied to the adjusted data and forced through zero (**Figure D-2**).

Figure D-2 Measured and Primary Adjusted Modelled NO₂ Comparison

Figure D-3 compares final adjusted modelled total NO₂ at each of the monitoring sites, to measured total NOx and shows the 1:1 relationship, as well as $\pm 10\%$ and $\pm 25\%$ of the 1:1 line.

Figure D-3 Measured and Final Adjusted Modelled NO₂ Comparison

The calculated adjustment factors imply that overall, the model has under-predicted the road-NO_x contribution. This is a common experience with this and most other models. The calculated Root Mean Square Error (RMSE) for this verification ($4.8 \ \mu g/m^3$) lies within the range considered to be acceptable by DEFRA (DEFRA, 2018a) (4 – 10).

Appendix E Ecological Receptor Results

Table E-1 Scenario 3d: Predicted 'in-isolation' Annual Nitrogen Deposition at Modelled Ecological Receptors (change >1% of critical load)

	• • • • •	Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
•	Load	Change	Critical Load	Year	DM	DS
CB1 0	10	-0.4	-4.3%	46.5	32.7	32.3
CB1 5	10	-0.4	-3.8%	45.1	31.7	31.3
CB1 10	10	-0.3	-3.5%	44.0	30.8	30.5
CB1 15	10	-0.3	-3.2%	43.0	30.1	29.8
CB1 20	10	-0.3	-2.9%	42.1	29.5	29.2
CB1 25	10	-0.3	-2.6%	40.7	28.6	28.3
CB1 30	10	-0.2	-2.3%	39.5	27.8	27.5
CB1 40	10	-0.2	-2.2%	38.5	27.1	26.9
CB1 50	10	-0.2	-1.8%	36.7	26.0	25.8
CB1 75	10	-0.2	-1.6%	35.5	25.2	25.0
CB1 100	10	-0.1	-1.4%	34.6	24.6	24.5
CB1 125	10	-0.1	-1.2%	33.9	24.2	24.0
CB1 150	10	-0.1	-1.1%	33.3	23.8	23.7
TAP11 0	10	1.0	10.0%	48.9	43.3	44.3
TAP11_5	10	0.8	8.4%	44.1	38.6	39.4
TAP11_10	10	0.7	7.4%	41.0	35.4	36.1
TAP11_15	10	0.7	6.6%	38.5	32.9	33.6
TAP11_20	10	0.6	6.0%	36.6	31.0	31.6
TAP11_25	10	0.5	5.1%	33.7	28.0	28.5
TAP11_30	10	0.0	4.4%	31.5	25.9	26.3
TAP11_40	10	0.4	3.9%	29.9	24.3	24.7
TAP11_50	10	0.3	3.1%	27.2	21.0	22.0
TAP11 75	10	0.0	2.5%	25.6	20.3	20.5
TAP11 100	10	0.2	2.0%	25.0	19.8	20.0
TAP11 125	10	0.2	1.7%	25.4	20.5	20.7
TAP11 150	10	0.1	1.3%	29.7	25.3	25.4
TAP11 175	10	0.1	1.3%	24.8	20.0	20.2
TAP11 200	10	0.1	1.3%	23.0	18.3	18.4
TAP13_0	10	0.3	2.6%	33.3	30.5	30.7
TAP13_5	10	0.0	2.0%	29.5	26.3	26.5
TAP13_10	10	0.2	1.8%	27.1	23.7	23.9
TAP13_15	10	0.2	1.6%	25.5	22.0	22.0
TAP13_20	10	0.1	1.4%	24.3	20.7	20.9
TAP13_25	10	0.1	1.2%	22.6	18.9	19.1
TAP14 0	10	0.5	4.7%	30.5	28.3	28.8
TAP14_5	10	0.0	4.2%	28.8	26.3	26.7
TAP14_10	10	0.4	3.8%	27.5	24.7	25.1
TAP14_15	10	0.4	3.5%	26.4	23.4	23.8
TAP14_20	10	0.3	3.2%	25.5	22.4	22.0
TAP14_25	10	0.3	2.8%	24.1	20.8	21 1
TAP14_30	10	0.3	2.5%	23.1	19.6	19.9
TAP14_40	10	0.0	2.3%	22.3	18.7	18.9
TAP14 50	10	0.2	1.8%	20.7	17.0	17.2
TAP14 75	10	0.2	1.6%	19.7	16.0	16 1
TAP14 100	10	0.1	1.3%	19.0	15.2	15.4
TAP14 125	10	0.1	1.2%	18.5	14.7	14.8
TAP14 150	10	0.1	1.1%	18.0	14.2	14.3
TAP4 0	10	0.1	1.3%	25.7	22.4	22.5

	Critical	Road	Contribution	Total Concentration			
Receptor	Load	Absolute	Change as % of	Base	Future Year	Future year	
		Change	Critical Load	Year	DM	DS	
TAP4_5	10	0.1	1.3%	24.4	20.7	20.9	
TAP4_10	10	0.1	1.2%	23.5	19.7	19.8	
TAP4_15	10	0.1	1.2%	22.8	18.9	19.0	
TAP4_20	10	0.1	1.2%	22.3	18.3	18.4	
TAP4_25	10	0.1	1.1%	21.6	17.5	17.6	
TAP4_30	10	0.1	1.1%	21.0	16.9	17.0	
TAP4_40	10	0.1	1.1%	20.6	16.4	16.5	
TAP5_0	10	0.1	1.4%	27.9	20.9	21.0	
<u>TAP5_5</u>	10	0.1	1.4%	26.8	20.0	20.1	
TAP5_10	10	0.1	1.3%	26.0	19.4	19.5	
TAP5_15	10	0.1	1.3%	25.4	18.9	19.0	
TAP5_20	10	0.1	1.2%	24.8	18.5	18.6	
TAP5_25	10	0.1	1.2%	24.0	17.8	17.9	
TAP5_30	10	0.1	1.2%	23.3	17.3	17.4	
TAP5_40	10	0.1	1.1%	22.7	16.9	17.0	
TAP5_50	10	0.1	1.1%	21.7	16.1	16.2	
TAP6_0	10	0.8	7.9%	46.1	39.8	40.6	
TAP6_5	10	0.7	b./%	41.5	35.2	35.8	
TAP6_10	10	0.6	5.9%	38.4	32.0	32.6	
TAP6_15	10	0.5	5.3%	36.0	29.6	30.2	
TAP6_20	10	0.5	4.8%	34.1	27.7	28.2	
TAP6_25	10	0.4	4.0%	31.1	24.9	25.3	
TAP6_30	10	0.3	3.5%	29.1	22.8	23.2	
TAP6_40	10	0.3	3.0%	27.4	21.3	21.0	
TAP6_30	10	0.2	2.3%	24.0	10.7	19.0	
TAP6_75	10	0.2	1.9%	22.8	17.1	17.3	
TAP6_100	10	0.2	1.0%	21.5	16.0	16.2	
TAP6_123	10	0.1	1.3%	20.5	15.2	15.4	
TAP0_130	10	0.1	1.2%	19.0	14.0	14.7	
TAP0_175	10	0.1	9.2%	19.2	14.2	14.3	
TAP7_0	10	0.8	0.3 /0 7 2%	47.0	41.5	42.4	
TAP7_0	10	0.7	6 <u>/%</u>	43.3	37.2	37.5	
TAP7_10	10	0.0	5.8%	37.7	31.6	39.7	
TAP7_13	10	0.0	5.0%	35.7	29.7	30.2	
TAP7 25	10	0.0	J.2 /0	32.7	26.7	27.1	
TAP7 30	10	0.4	3.9%	30.5	24.5	24.9	
TAP7_40	10	0.3	3.4%	28.7	22.9	23.2	
TAP7 50	10	0.3	2.7%	25.5	19.9	20.2	
TAP7 75	10	0.0	2.2%	23.5	18.0	18.3	
TAP7 100	10	0.2	1.8%	22.0	16.8	17.0	
TAP7 125	10	0.2	1.6%	21.0	15.9	16.1	
TAP7 150	10	0.1	1 4%	20.1	15.2	15.3	
TAP7 175	10	0.1	1.4%	19.4	14.6	14.8	
TAP7 200	10	0.1	1.1%	18.9	14.2	14.3	
TBH10 0	10	-0.1	-1.1%	37.1	31.0	30.9	
TBH10 5	10	-0.1	-1.1%	32.8	26.9	26.8	
TBH11 0	10	-0.3	-3.4%	33.0	26.3	26.0	
TBH11 5	10	-0.3	-2.5%	30.4	24.0	23.7	
TBH11 10	10	-0.2	-1.9%	28.6	22.5	22.3	
TBH11 15	10	-0.2	-1.6%	27.4	21.5	21.4	
TBH11 20	10	-0.1	-1.4%	26.4	20.8	20.6	
TBH13_0	10	-0.1	-1.3%	33.7	27.0	26.9	

	Critical	Road	Contribution	Total Concentration			
Receptor	Unitical	Absolute	Change as % of	Base	Future Year	Future year	
	LUau	Change	Critical Load	Year	DM	DS	
TBH13_5	10	-0.1	-1.1%	30.9	24.5	24.4	
TBH14_0	10	0.1	1.4%	17.8	14.0	14.1	
TBH14_5	10	0.1	1.1%	17.4	13.6	13.7	
TBH16_10	10	0.1	1.1%	20.6	17.2	17.3	
TBH18_0	10	0.2	1.6%	29.4	24.7	24.9	
TBH18_5	10	0.1	1.1%	26.3	21.6	21.8	
TBH19_0	10	1.3	12.6%	21.6	17.4	18.7	
TBH19_5	10	0.7	7.1%	18.5	14.5	15.2	
TBH19_10	10	0.5	5.2%	17.5	13.4	13.9	
TBH19_15	10	0.4	4.1%	16.9	12.9	13.3	
TBH19_20	10	0.3	3.5%	16.5	12.5	12.8	
TBH19_25	10	0.3	2.6%	16.0	12.0	12.3	
TBH19_30	10	0.2	2.1%	15.7	11.8	12.0	
TBH19_40	10	0.2	1.8%	15.5	11.6	11.8	
TBH19_50	10	0.1	1.3%	15.2	11.3	11.4	
TBH20_0	10	0.3	3.1%	16.2	12.3	12.6	
TBH20_5	10	0.8	8.0%	19.0	14.9	15.7	
TBH20_10	10	0.6	6.5%	18.1	14.1	14.7	
TBH20_15	10	0.5	5.5%	17.6	13.5	14.1	
TBH20_20	10	0.5	4.7%	17.1	13.1	13.6	
TBH20_25	10	0.4	3.8%	16.6	12.6	13.0	
TBH20_30	10	0.3	3.1%	16.2	12.3	12.6	
TBH20_40	10	0.3	2.7%	16.0	12.0	12.3	
TBH20_50	10	0.2	2.0%	15.6	11.7	11.9	
TBH20_75	10	0.2	1.6%	15.4	11.5	11.6	
TBH20_100	10	0.1	1.3%	15.2	11.3	11.4	
TBH20_125	10	0.1	1.2%	15.1	11.2	11.3	
TBH21_0	10	0.5	5.1%	18.4	14.2	14.7	
	10	0.5	4.7%	10.2	13.9	14.4	
	10	0.4	4.3%	10.0	13.7	14.2	
TBH21_13	10	0.4	4.0%	17.0	13.0	14.0	
TBH21_20	10	0.4	3.1%	17.0	13.4	13.0	
TBH21_23	10	0.3	3.3 /0 2 Q%	17.4	13.2	13.3	
TBH21_30	10	0.3	2.5%	17.2	12.8	13.5	
TBH21_50	10	0.3	2.0%	16.8	12.0	12.8	
TBH21_50	10	0.2	1.8%	16.6	12.0	12.0	
TBH21_100	10	0.2	1.5%	16.4	12.4	12.0	
TBH21_100	10	0.2	1.3%	16.3	12.2	12.4	
TBH21_120	10	0.1	1.0%	16.2	12.0	12.0	
TBH22_0	10	0.1	1.2%	23.7	19.1	19.2	
TBH24 0	10	0.1	2.0%	27.2	21.7	21.9	
TBH24_5	10	0.1	1.3%	23.2	18.0	18.1	
TBH3 0	10	-0.4	-3.8%	22.3	18.1	17.7	
TBH3_5	10	-0.2	-2.4%	19.5	15.3	15.1	
TBH3_10	10	-0.2	-1.8%	18.4	14.3	14.1	
TBH3 15	10	-0.1	-1.5%	17.8	13.7	13.5	
TBH3 20	10	-0.1	-1.3%	17.3	13.3	13.1	
TBH4 0	10	0.4	4.3%	23.7	20.1	20.5	
TBH4 5	10	0.3	3.0%	21.2	17.4	17.7	
TBH4 10	10	0.2	2.3%	19.9	16.1	16.3	
TBH4 15	10	0.2	1.9%	19.1	15.3	15.4	
TBH4_20	10	0.2	1.6%	18.6	14.7	14.8	

	Critical	Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
_	LUau	Change	Critical Load	Year	DM	DS
TBH4_25	10	0.1	1.3%	17.9	13.9	14.1
TBH5_0	10	-0.1	-1.4%	29.2	23.2	23.1
TBH5_5	10	-0.2	-2.3%	26.7	21.1	20.9
TBH5_10	10	-0.3	-2.7%	25.2	19.8	19.5
TBH5_15	10	-0.3	-3.0%	24.1	18.9	18.6
TBH5_20	10	-0.3	-3.1%	23.3	18.2	17.9
TBH5_25	10	-0.3	-3.1%	22.1	17.2	16.9
TBH5_30	10	-0.3	-3.1%	21.3	16.5	16.2
TBH5_40	10	-0.3	-2.9%	20.6	15.9	15.6
TBH5_50	10	-0.3	-2.6%	19.5	15.0	14.8
TBH5_75	10	-0.2	-2.3%	18.8	14.5	14.2
TBH5_100	10	-0.2	-2.0%	18.3	14.1	13.9
TBH5_125	10	-0.2	-1.8%	18.0	13.8	13.6
TBH5_150	10	-0.2	-1.6%	17.7	13.5	13.4
TBH5_175	10	-0.2	-1.5%	17.5	13.4	13.2
TBH5_200	10	-0.1	-1.4%	17.3	13.2	13.1
WG1_0	10	0.2	1.8%	48.6	33.8	34.0
WG1_5	10	0.1	1.5%	44.6	30.9	31.1
WG1_10	10	0.1	1.3%	41.6	28.8	28.9
WG1_15	10	0.1	1.1%	39.1	27.1	27.2
WG2_0	10	0.1	1.2%	40.0	28.3	28.4
WG3_0	10	0.1	1.4%	41.4	29.3	29.4
WG4_0	10	0.2	1.9%	39.6	20.0	20.2
WG4 5	10	0.1	1.3%	34.8	19.2	19.3

Table E-2 Scenario 3d: Predicted 'in-combination' Annual Nitrogen Deposition at Modelled Ecological Receptors (change >1% of critical load)

		Road	Contribution		ation	
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
-	Load	Change	Critical Load	Year	DM	DS
CB1_0	10	-1.2	-11.7%	46.5	33.4	32.3
CB1_5	10	-1.1	-10.9%	45.1	32.4	31.3
CB1_10	10	-1.0	-10.3%	44.0	31.5	30.5
CB1_15	10	-1.0	-9.7%	43.0	30.8	29.8
CB1_20	10	-0.9	-9.2%	42.1	30.2	29.2
CB1_25	10	-0.8	-8.2%	40.7	29.1	28.3
CB1_30	10	-0.7	-7.3%	39.5	28.3	27.5
CB1_40	10	-0.7	-6.5%	38.5	27.6	26.9
CB1_50	10	-0.5	-5.0%	36.7	26.3	25.8
CB1_75	10	-0.4	-4.1%	35.5	25.4	25.0
CB1_100	10	-0.4	-3.5%	34.6	24.8	24.5
CB1_125	10	-0.3	-3.1%	33.9	24.3	24.0
CB1_150	10	-0.3	-2.8%	33.3	24.0	23.7
CB1_175	10	-0.3	-2.6%	32.9	23.7	23.4
CB1_200	10	-0.2	-2.4%	32.5	23.4	23.2
TAP1_0	10	-4.7	-47.3%	22.4	17.0	12.3
TAP1_5	10	-3.4	-34.4%	20.4	15.4	11.9
TAP1_10	10	-2.8	-27.9%	19.4	14.5	11.8
TAP1_15	10	-2.4	-23.5%	18.8	14.0	11.6
TAP1_20	10	-2.0	-20.3%	18.3	13.6	11.5
TAP1_25	10	-1.6	-15.9%	17.6	13.0	11.4
TAP1_30	10	-1.3	-13.0%	17.1	12.6	11.3
TAP1_40	10	-1.1	-10.9%	16.8	12.4	11.3
TAP1_50	10	-0.8	-7.7%	16.3	12.0	11.2
TAP1_75	10	-0.6	-5.8%	16.0	11.7	11.2
TAP1_100	10	-0.5	-4.5%	15.8	11.6	11.1
TAP1_125	10	-0.4	-3.6%	15.7	11.5	11.1
TAP1_150	10	-0.3	-3.0%	15.6	11.4	11.1
TAP1_175	10	-0.2	-2.4%	15.5	11.3	11.1
TAP1_200	10	-0.2	-2.0%	15.4	11.3	11.1
TAP10_0	10	-0.5	-4.6%	16.7	12.3	11.8
TAP10_5	10	-0.2	-2.0%	16.1	11.8	11.6
TAP10_40	10	0.1	1.1%	15.3	11.2	11.3
TAP10_50	10	0.1	1.4%	15.2	11.1	11.3
TAP10_75	10	0.2	1.6%	15.1	11.1	11.2
<u>TAP10_100</u>	10	0.2	1.7%	15.1	11.0	11.2
TAP10_125	10	0.2	1.8%	15.1	11.0	11.2
TAP10_150	10	0.2	1.8%	15.0	11.0	11.2
TAP10_175	10	0.2	1.8%	15.0	11.0	11.2
TAP10_200	10	0.2	1.8%	15.0	11.0	11.1
TAP11_0	10	-0.2	-2.3%	16.3	12.0	11.8
TAP11_0	10	3.3	32.1%	48.9	41.1	44.3
TAP11_5	10	2.8	28.4%	44.1	36.6	39.4
TAP11_10	10	2.6	25.6%	41.0	33.5	36.1
TAP11_15	10	2.3	23.3%	30.5	31.2	33.0
TAP11_20	10	2.2	21.6%	30.0	29.4	31.6
TAP11_25	10	0.1	1.2%	15.5	11.4	11.5
TAP11_25	10	1.9	18.9%	33./	20.0	28.5
TAP11_30	10	0.2	1.5%	15.4	11.3	11.5
TAP11_30	10	1./	17.0%	31.5	24.0	20.3
IAP II_40	10	0.2	1./70	15.5	11.3	11.4

	Oritical	Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
_	LUau	Change	Critical Load	Year	DM	DS
TAP11 40	10	1.6	15.5%	29.9	23.1	24.7
TAP11 50	10	0.2	2.0%	15.3	11.2	11.4
TAP11 50	10	1.3	13.3%	27.2	20.7	22.0
TAP11 75	10	0.2	2.2%	15.2	11.1	11.4
TAP11 75	10	1.2	12.3%	25.6	19.3	20.5
TAP11 100	10	0.2	2.3%	15.2	11.1	11.3
TAP11 100	10	1.2	12.4%	25.0	18.8	20.0
TAP11 125	10	0.2	2.3%	15.1	11.1	11.3
TAP11 125	10	1.5	14.7%	25.4	19.2	20.7
TAP11 150	10	0.2	2.4%	15.1	11.1	11.3
TAP11 150	10	2.5	25.1%	29.7	22.9	25.4
TAP11 175	10	0.2	2.4%	15.1	11.1	11.3
TAP11 175	10	1.5	15.1%	24.8	18.7	20.2
TAP11 200	10	0.2	2.4%	15.1	11.0	11.3
TAP11 200	10	1.2	11.9%	23.0	17.2	18.4
TAP12 5	10	0.2	2.2%	17.6	13.1	13.3
TAP12 10	10	0.3	3.1%	17.4	12.9	13.2
TAP12 15	10	0.4	3.6%	17.3	12.8	13.2
TAP12_20	10	0.4	4.0%	17.2	12.7	13.1
TAP12 25	10	0.4	4.5%	17.1	12.6	13.1
TAP12_30	10	0.5	4.7%	17.0	12.6	13.0
TAP12_40	10	0.5	4.9%	16.9	12.5	13.0
TAP12_50	10	0.5	5.2%	16.8	12.0	12.9
TAP12_75	10	0.5	5.3%	16.7	12.4	12.9
TAP12_100	10	0.5	5.3%	16.6	12.3	12.8
TAP12 125	10	0.5	5.3%	16.6	12.3	12.8
TAP12 150	10	0.5	5.3%	16.5	12.0	12.0
TAP12 175	10	0.5	5.2%	16.5	12.2	12.7
TAP12 200	10	0.5	5.2%	16.0	12.2	12.7
TAP13 0	10	3.0	38.7%	33.3	26.9	30.7
TAP13_5	10	3.1	30.9%	29.5	23.4	26.5
TAP13 10	10	2.6	26.2%	27.1	21.3	23.9
TAP13_15	10	2.3	23.0%	25.5	19.9	20.0
TAP13_20	10	2.0	20.5%	24.3	18.8	20.9
TAP13 25	10	17	17.2%	22.6	17.3	19.1
TAP13_30	10	1.7	14.8%	21.0	16.3	17.8
TAP13 40	10	1.3	13.1%	20.5	15.6	16.9
TAP13_50	10	1.0	10.1%	19.1	14.4	15.4
TAP13 75	10	0.9	8.8%	18.3	13.7	14.6
TAP13 100	10	0.0	7.7%	17.7	13.2	14.0
TAP13 125	10	0.0	6.9%	17.3	12.9	13.6
TAP13 150	10	0.6	6.3%	17.0	12.5	13.0
TAP13 175	10	0.0	5.8%	16.7	12.0	13.0
TAP13 200	10	0.0	5.0%	16.5	12.7	12.8
TAP14_0	10	53	52 9%	30.5	23.5	28.8
	10	<i>J</i> .J	JZ.3 /0 A7 2%	28.9	23.5	20.0
TAP14_0	10	4.7	41.2/0 12 70/	20.0	22.0	20.7
TAP14_10	10	4.0	42.1%	21.J 26 A	20.0 10.0	20.1 22.0
TAP14_13	10	3.8	35.1/0	20.4	19.9	23.0
TAP14_20	10	3.0 2.1	21 50/	20.0	13.1	22.1
TAP14_20	10	3.1 2.0	31.3% 20.0%	24.1	17.3	41.1
TAP14_30	10	2.0	20.0%	20.1 22.2	17.1	19.9
TAP14_40	10	2.0	23.2%	22.3	10.4	10.9
14714_00	10	Z.U	20.3%	20.1	15.2	17.2

	Critical	Road	Contribution		ation	
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	LUau	Change	Critical Load	Year	DM	DS
TAP14 75	10	1.7	17.1%	19.7	14.4	16.1
TAP14 100	10	1.5	14.8%	19.0	13.9	15.4
TAP14 125	10	1.3	13.1%	18.5	13.5	14.8
TAP14 150	10	1.2	11.8%	18.0	13.2	14.3
TAP14 175	10	1.1	10.7%	17.7	12.9	14.0
TAP14 200	10	1.0	9.8%	17.4	12.7	13.7
TAP2 0	10	-5.1	-51.3%	22.4	17.1	11.9
TAP2 5	10	-4 1	-41.3%	20.9	15.8	11.7
TAP2 10	10	-3.5	-35.2%	20.0	15.0	11.5
TAP2 15	10	-3.1	-30.9%	19.3	14.5	11.0
TAP2 20	10	-2.8	-27.6%	18.8	14.0	11.3
TAP2 25	10	-2.3	-22.9%	18.0	13.5	11.0
TAP2 30	10	-2.0	_19.7%	17.6	13.0	11.2
TAP2 40	10	_1.7	_17.3%	17.0	12.7	11.0
TAP2 50	10	-1.7	-17.3%	16.6	12.7	10.9
TAP2_30	10	-1.5	10.8%	16.0	11.0	10.9
TAP2_10	10	-1.1	-10.0%	16.0	11.5	10.0
TAP2 125	10	-0.9	9.5%	15.0	11.7	10.0
TAP2_123	10	-0.8	-0.1/0	15.0	11.0	10.0
TAP2_130	10	-0.7	-7.3%	15.7	11.5	10.0
TAP2 200	10	-0.7	-0.0%	15.5	11.4	10.0
TAP2_200	10	-0.0	-0.0%	15.5	11.4	10.0
TAP3_0	10	3.0 2.7	30.0% 27.20/	22.7	17.2	22.0
TAP3_3	10	3.7	37.3%	20.4	15.5	19.0
TAP3_10	10	3.0	29.1%	19.4	14.5	17.4
TAP3_15	10	2.5	25.0%	18.8	14.0	16.4
TAP3_20	10	2.2	21.8%	18.4	13.6	15.8
TAP3_25	10	1.8	17.0%	17.8	13.1	14.9
TAP3_30	10	1.5	14.9%	17.4	12.8	14.3
TAP3_40	10	1.3	10.1%	17.2	12.0	13.9
TAP3_30	10	1.0	10.2%	16.7	12.2	13.3
TAP3_75	10	0.0	0.3%	10.4	12.0	12.9
TAP3_100	10	0.7	7.3%	16.2	11.8	12.0
TAP3_125	10	0.7	b.5%	16.0	11.7	12.4
TAP3_150	10	0.6	5.9%	15.9	11.6	12.2
TAP3_175	10	0.5	5.4%	15.7	11.5	12.0
TAP3_200	10	0.5	5.0%	15.6	11.4	11.9
	10	3.0	29.5%	25.7	19.5	22.5
TAP4_5	10	2.4	24.5%	24.4	18.4	20.9
TAP4_10	10	2.1	21.3%	23.5	17.7	19.8
<u>TAP4_15</u>	10	1.9	19.1%	22.8	17.1	19.0
TAP4_20	10	1.7	17.4%	22.3	16.7	18.4
TAP4_25	10	1.5	15.1%	21.6	16.1	17.6
TAP4_30	10	1.4	13.6%	21.0	15.6	17.0
<u>IAP4_40</u>	10	1.2	12.5%	20.6	15.3	16.5
1AP4_50	10	1.1	10.5%	19.8	14.6	15.7
1AP4_75	10	0.9	9.2%	19.2	14.2	15.1
IAP4_100	10	0.8	8.2%	18.8	13.8	14.6
IAP4_125	10	0.7	7.4%	18.4	13.5	14.3
IAP4_150	10	0.7	6.8%	18.1	13.3	14.0
TAP4_175	10	0.6	6.3%	17.8	13.1	13.7
TAP4_200	10	0.6	5.8%	17.7	13.0	13.6
TAP5_0	10	-0.5	-5.2%	27.9	21.5	21.0
TAP5_5	10	-0.4	-4.2%	26.8	20.6	20.1

	Oritical	Road	Contribution		ation	
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
_	LUau	Change	Critical Load	Year	DM	DS
TAP5 10	10	-0.4	-3.5%	26.0	19.9	19.5
TAP5 15	10	-0.3	-3.0%	25.4	19.3	19.0
TAP5 20	10	-0.3	-2.5%	24.8	18.8	18.6
TAP5 25	10	-0.2	-1.6%	24.0	18.1	17.9
TAP5 75	10	0.1	1.3%	20.9	15.6	15.7
TAP5 100	10	0.2	1.8%	20.4	15.1	15.3
TAP5 125	10	0.2	2.0%	20.1	14.9	15.1
TAP5 150	10	0.2	2.2%	19.8	14.6	14.8
TAP5 175	10	0.2	2.3%	19.5	14.4	14.6
TAP5 200	10	0.2	2.4%	19.2	14.2	14.4
TAP6_0	10	2.8	28.1%	46.1	37.8	40.6
TAP6_5	10	23	23.4%	41.5	33.5	35.8
TAP6 10	10	2.0	20.2%	38.4	30.6	32.6
TAP6_15	10	1.8	17.7%	36.0	28.4	30.2
TAP6 20	10	1.0	15.7%	34.1	26.6	28.2
TAP6 25	10	1.3	12.8%	31.1	24.0	25.3
TAP6_30	10	1.0	10.7%	29.1	22.1	23.2
TAP6 40	10	0.9	9.1%	27.4	20.7	21.6
TAP6_50	10	0.6	6.4%	24.6	18.3	19.0
TAP6 75	10	0.5	4.8%	22.8	16.8	17.3
TAP6 100	10	0.0	3.8%	21.5	15.8	16.2
TAP6 125	10	0.3	3.1%	20.5	15.0	15.4
TAP6 150	10	0.3	2.6%	19.8	14.5	14.7
TAP6 175	10	0.0	2.3%	19.2	14.0	14.3
TAP6 200	10	0.2	1.9%	18.7	13.7	13.9
TAP7 0	10	3.4	33.8%	47.6	39.0	42.4
TAP7 5	10	2.9	29.4%	43.3	35.0	37.9
TAP7 10	10	2.6	26.1%	40.0	32.1	34.7
TAP7 15	10	2.0	23.6%	37.7	29.8	32.2
TAP7 20	10	2.2	21.6%	35.7	28.0	30.2
TAP7 25	10	1.9	18.5%	32.7	25.3	27.1
TAP7 30	10	1.6	16.3%	30.5	23.3	24.9
TAP7 40	10	14	14 5%	28 7	21.8	23.2
TAP7 50	10	1.1	11.5%	25.5	19.0	20.2
TAP7 75	10	0.9	9.5%	23.5	17.4	18.3
TAP7 100	10	0.8	8.1%	22.0	16.2	17.0
TAP7 125	10	0.0	7.1%	21.0	15.4	16.1
TAP7 150	10	0.6	6.3%	20.1	14.7	15.3
TAP7 175	10	0.6	5.7%	19.4	14.2	14.8
TAP7 200	10	0.5	5.2%	18.9	13.8	14.3
TAP8 0	10	-0.5	-5.2%	16.9	12.5	12.0
TAP8 5	10	-0.3	-3.1%	16.5	12.1	11.8
TAP8 10	10	-0.2	-2.2%	16.2	11.9	11.7
TAP8 15	10	-0.2	-1.5%	16.1	11.8	11.7
TAP8 20	10	-0.1	-1.1%	16.0	11.7	11.6
TAP8 125	10	0.1	1.1%	15.7	11.5	11.6
TAP8 150	10	0.1	1.2%	15.7	11.5	11.6
TAP8 175	10	0.1	1.3%	15.8	11.5	11.7
TAP8 200	10	0.1	1.4%	15.8	11.6	11.7
TAP9 15	10	0.1	1.3%	25.3	19.1	19.2
TAP9 20	10	0.1	1.4%	24.3	18.3	18.4
TAP9 25	10	0.1	1.5%	22.8	17.1	17.2
TAP9 30	10	0.2	1.5%	21.7	16.1	16.3

		Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
-	LUau	Change	Critical Load	Year	DM	DS
TAP9 40	10	0.2	1.5%	20.8	15.4	15.6
TAP9 50	10	0.1	1.5%	19.3	14.2	14.3
TAP9 75	10	0.1	1.4%	18.4	13.5	13.6
TAP9 100	10	0.1	1.4%	17.7	13.0	13.1
TAP9 125	10	0.1	1.4%	17.2	12.6	12.7
TAP9 150	10	0.1	1.3%	16.9	12.3	12.5
TAP9 175	10	0.1	1.3%	16.6	12.1	12.3
TAP9 200	10	0.1	1.3%	16.4	12.0	12.1
TBH10 0	10	1.1	10.9%	37.1	29.8	30.9
TBH10 5	10	0.8	8.5%	32.8	26.0	26.8
TBH10 10	10	0.7	7.4%	30.3	23.7	24.4
TBH10 15	10	0.7	6.8%	28.5	22.1	22.8
TBH10_20	10	0.6	6.4%	27.2	21.0	21.6
TBH10 25	10	0.6	5.9%	25.3	19.3	19.9
TBH10_30	10	0.6	5.6%	24.0	18.2	18.8
TBH10_40	10	0.5	5.4%	23.0	17.4	17.9
TBH10 50	10	0.5	5.0%	21.4	16.1	16.6
TBH10 75	10	0.5	4.8%	20.5	15.3	15.8
TBH10 100	10	0.5	4.6%	19.8	14.8	15.2
TBH10 125	10	0.4	4.4%	19.3	14.4	14.8
TBH10 150	10	0.4	4.2%	18.9	14.1	14.5
TBH10_175	10	0.4	4.1%	18.6	13.8	14.2
TBH10_200	10	0.4	4.0%	18.3	13.6	14.0
TBH11 0	10	0.3	2.7%	33.0	25.7	26.0
TBH11_5	10	0.3	3.1%	30.4	23.4	23.7
TBH11_10	10	0.3	3.3%	28.6	22.0	22.3
TBH11_15	10	0.3	3.4%	27.4	21.0	21.4
TBH11_20	10	0.3	3.4%	26.4	20.3	20.6
TBH11 25	10	0.3	3.5%	25.1	19.2	19.6
TBH11_30	10	0.3	3.5%	24.1	18.4	18.8
TBH11 40	10	0.4	3.5%	23.4	17.8	18.1
TBH11_50	10	0.3	3.5%	22.0	16.7	17.0
TBH11 75	10	0.3	3.4%	21.1	15.9	16.3
TBH11 100	10	0.3	3.4%	20.5	15.4	15.7
TBH11 125	10	0.3	3.3%	19.9	14.9	15.3
TBH11 150	10	0.3	3.3%	19.5	14.6	14.9
TBH11 175	10	0.3	3.2%	19.1	14.3	14.6
TBH11 200	10	0.3	3.1%	18.8	14.0	14.3
TBH12 0	10	0.2	2.0%	28.8	22.8	23.0
TBH12_5	10	0.2	2.2%	26.1	20.4	20.6
TBH12_10	10	0.2	2.3%	24.4	18.9	19.1
TBH12_15	10	0.2	2.0%	23.2	17.9	18.1
TBH12_20	10	0.2	2.4%	22.3	17.0	17.3
TBH12_25	10	0.2	2.5%	21.0	16.0	16.2
TBH12_30	10	0.3	2.5%	20.2	15.2	15.5
TBH12_00	10	0.3	2.5%	19.6	14 7	14.9
TBH12 50	10	0.3	2.5%	18.6	13.8	14.0
TBH12_55	10	0.0	2.6%	18.0	13.3	13.6
TBH12 100	10	0.0	2.5%	17 5	13.0	13.0
TBH12 125	10	0.0	2.070	17.5	10.0	13.2
TBH12 150	10	0.3	2.0 /0	17.2	12.7	12.0
TBH12 175	10	0.3	2.0 /0	16.9	12.0	12.0
TBH12 200	10	0.0	2.0 /0	16.7	12.7	12.7
	10	0.0	2.0/0	10.7	12.5	12.0

		Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
-	LUau	Change	Critical Load	Year	DM	DS
TBH13 0	10	0.4	4.2%	18.4	13.5	13.9
TBH13 0	10	0.5	4.9%	33.7	26.4	26.9
TBH13 5	10	0.4	4.1%	18.3	13.5	13.9
TBH13 5	10	0.4	4.3%	30.9	23.9	24.4
TBH13 10	10	0.4	4.0%	18.3	13.4	13.8
TBH13 10	10	0.4	3.8%	29.0	22.2	22.6
TBH13 15	10	0.4	3.9%	18.2	13.4	13.8
TBH13 15	10	0.3	3.4%	27.5	20.9	21.3
TBH13 20	10	0.4	3.8%	16.2	11.9	12.3
TBH13 20	10	0.3	3.1%	26.3	19.9	20.2
TBH13 25	10	0.4	3.7%	16.1	11.9	12.2
TBH13 25	10	0.3	2.6%	24.5	18.4	18.6
TBH13 30	10	0.4	3.6%	16.1	11.8	12.2
TBH13 30	10	0.2	2.3%	23.2	17.3	17.5
TBH13 40	10	0.3	3.5%	16.0	11.8	12.1
TBH13 40	10	0.2	2.0%	22.2	16.5	16.7
TBH13 50	10	0.3	3.3%	15.9	11.7	12.0
TBH13 50	10	0.2	1.5%	20.5	15.1	15.2
TBH13 75	10	0.3	3.2%	15.9	11.7	12.0
TBH13 75	10	0.1	1.2%	19.4	14.2	14.3
TBH13 100	10	0.3	3.1%	15.8	11.6	11.9
TBH13 125	10	0.3	3.0%	15.8	11.6	11.9
TBH13 150	10	0.3	2.9%	15.8	11.6	11.9
TBH13 175	10	0.3	2.9%	15.8	11.6	11.8
TBH13 200	10	0.3	2.9%	15.7	11.5	11.8
TBH14 0	10	1.1	10.5%	17.8	13.1	14.1
TBH14 5	10	0.9	8.6%	17.4	12.8	13.7
TBH14 10	10	0.7	7.4%	17.2	12.7	13.4
TBH14 15	10	0.7	6.6%	17.1	12.6	13.2
TBH14 20	10	0.6	6.0%	17.0	12.5	13.1
TBH14 25	10	0.5	5.2%	16.9	12.4	12.9
TBH14 30	10	0.5	4.7%	16.8	12.3	12.8
TBH14 40	10	0.4	4.3%	16.8	12.3	12.7
TBH14 50	10	0.4	3.7%	16.7	12.3	12.6
TBH14 75	10	0.3	3.4%	16.7	12.3	12.6
TBH14 100	10	0.3	3.2%	16.8	12.3	12.6
TBH14 125	10	0.3	3.1%	16.8	12.3	12.6
TBH14 150	10	0.3	3.1%	16.9	12.4	12.7
TBH14 175	10	0.3	3.1%	17.0	12.4	12.7
TBH14 200	10	0.3	3.1%	17.1	12.5	12.8
TBH15 0	10	1.5	14.7%	23.4	17.7	19.2
TBH15 5	10	1.3	12.6%	22.2	16.7	18.0
TBH15 10	10	1.1	11.1%	21.3	16.0	17.1
TBH15 15	10	1.0	10.0%	20.7	15.5	16.5
TBH15 20	10	0.9	9.1%	20.2	15.1	16.0
TBH15 25	10	0.8	7.8%	19.5	14.5	15.2
TBH15 30	10	0.7	6.9%	18.9	14.0	14.7
TBH15 40	10	0.6	6.2%	18.5	13.7	14.3
TBH15 50	10	0.5	5.0%	17.8	13.1	13.6
TBH15 75	10	0.4	4.2%	17.3	12.7	13.1
TBH15 100	10	0.4	3.6%	16.9	12.5	12.8
TBH15 125	10	0.3	3.2%	16.7	12.3	12.6
TBH15 150	10	0.3	2.8%	16.5	12.1	12.4

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Oritical	Road	Contribution	Total Concentration		
Load Change Critical Load Year DM DS TBH15 200 10 0.3 2.6% 16.4 12.0 12.3 TBH16 0 0.1 3.1 31.0% 23.0 17.3 20.4 TBH16 10 2.3 22.7% 21.4 16.0 18.3 TBH16 10 1.9 19.4% 20.6 15.4 17.3 TBH16 10 1.7 16.8% 20.1 14.9 16.6 TBH16 20 10 1.5 14.6% 19.2 14.2 15.4 TBH16 20 10 1.1 10.5% 18.8 13.7 14.6 TBH16 10 0.7 7.2% 18.6 13.7 14.6 TBH16 10 0.5 5.3% 17.6 12.7 13.3 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH16 15.0 10.1 1.3 <	Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	LUau	Change	Critical Load	Year	DM	DS
TBH16 200 10 0.2 2.4% 16.3 11.9 12.2 TBH16 0 10 3.1 31.0% 23.0 17.3 20.4 TBH16 10 1.9 19.4% 20.6 15.4 17.3 20.4 TBH16 10 1.9 19.4% 20.6 15.4 17.3 16.6 TBH16 10 1.5 14.6% 19.8 14.7 16.6 TBH16 20 10 1.5 14.6% 19.8 13.9 15.0 TBH16 20 10 1.1 10.5% 18.8 13.9 15.0 TBH16 20 10 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.6 6.0% 17.4 12.8 13.3 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 4.3% 17.1 12.6 13.0	TBH15 175	10	0.3	2.6%	16.4	12.0	12.3
TBH16 0 3.1 31.0% 23.0 17.3 20.4 TBH16 10 2.3 22.7% 21.4 16.0 18.3 TBH16 10 1.9 19.4% 20.6 15.4 17.3 TBH16 10 1.7 16.8% 20.1 14.9 16.6 TBH16 20 10 1.5 14.6% 19.8 14.7 16.1 TBH16 20 10 1.2 12.0% 18.8 13.9 15.0 TBH16 20 10 0.7 7.2% 18.6 13.7 14.6 TBH16 10 0.7 7.2% 18.1 13.3 13.7 TBH16 10 0.6 6.0% 17.8 13.1 13.7 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 3.7%	TBH15 200	10	0.2	2.4%	16.3	11.9	12.2
TBH16 10 2.3 22.7% 21.4 16.0 18.3 TBH16 10 1.9 19.4% 20.6 15.4 17.3 TBH16 10 1.7 16.8% 20.1 14.9 16.6 TBH16 20 10 1.5 14.6% 20.1 14.9 16.6 TBH16 20 10 1.5 14.6% 19.2 14.2 15.4 TBH16 0 0 1.2 12.0% 19.2 14.2 15.4 TBH16 0 0 1.2 12.0% 19.2 14.2 15.4 TBH16 10 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.6 6.0% 17.8 13.1 13.7 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 4.3% 17.1 12.6 13.0 TBH17 10 0.4	TBH16 0	10	3.1	31.0%	23.0	17.3	20.4
TBH16 10 1.9 19.4% 20.6 15.4 17.3 TBH16 10 1.7 16.8% 20.1 14.9 16.6 TBH16 20 10 1.2 12.0% 19.2 14.2 15.4 TBH16 20 10 1.2 12.0% 19.2 14.2 15.0 TBH16 00 0.11 10.5% 18.8 13.9 15.0 TBH16 10 0.7 7.2% 18.1 13.1 13.7 TBH16 10 0.6 6.0% 17.8 13.1 13.7 TBH16 100 0.5 5.3% 17.6 12.9 13.5 TBH16 100 0.4 4.3% 17.3 12.7 13.1 TBH16 100 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 1.2 12.1% 20.6<	TBH16 5	10	2.3	22.7%	21.4	16.0	18.3
TBH16 10 1.7 16.8% 20.1 14.9 16.6 TBH16 20 10 1.5 14.6% 19.8 14.7 16.1 TBH16 20 10 1.2 12.0% 19.2 14.2 15.4 TBH16 00 10 1.1 10.5% 18.8 13.9 15.0 TBH16 010 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.6 6.0% 17.8 13.1 13.7 TBH16 10 0.5 4.3% 17.4 12.9 13.5 TBH16 10 0.4 4.3% 17.1 12.6 13.0 TBH17 10 0.4 4.3% 17.1 12.6 13.0 TBH17 10 1.2 12.9% 21.0 15.8 17.1 TBH17 10 1.2 12.9% 21.0 15.8 17.1 TBH17 10 1.2 12.9%	TBH16 10	10	1.9	19.4%	20.6	15.4	17.3
TBH16 20 10 1.5 14.6% 19.8 14.7 16.1 TBH16 25 10 1.2 12.0% 19.2 14.2 15.4 TBH16 0 10 0.9 9.2% 18.6 13.7 14.6 TBH16 0 10 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.5 5.3% 17.6 12.9 13.5 TBH16 10 0.5 5.3% 17.4 12.8 13.3 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH16 10 0.4 4.3% 17.3 12.7 13.3 TBH17 10 1.3 12.9% 21.0 15.8 16.7 TBH17 10 1.2 11.5% 20.3 15.2 16.4 TBH17 10 1.1 10.6% 19.8 14.8 15.9 TBH17 10 0.1	TBH16 15	10	1.7	16.8%	20.1	14.9	16.6
TBH16 25 10 1.2 12.0% 19.2 14.2 15.4 TBH16 30 10 1.1 10.5% 18.8 13.9 15.0 TBH16 10 0.0 9.2% 18.6 13.7 14.6 TBH16 50 10 0.7 7.2% 18.1 13.3 14.1 TBH16 100 10 0.5 5.3% 17.6 12.9 13.5 TBH16 100 10 0.5 4.7% 17.4 12.8 13.3 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH17 10 0.4 4.0% 17.1 12.6 13.0 TBH17 10 1.2 12.9% 21.0 15.8 17.1 TBH17 10 1.2 14.1% 20.0 15.0 16.1 TBH17 10 1.2 11.5% 20.3 15.2 16.4 TBH17 10	TBH16 20	10	1.5	14.6%	19.8	14.7	16.1
TBH16 30 10 1.1 10.5% 18.8 13.9 16.0 TBH16 0 10 0.9 9.2% 18.6 13.7 14.6 TBH16 0 10 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.5 5.3% 17.6 12.9 13.5 TBH16 125 10 0.5 4.7% 17.4 12.8 13.3 TBH16 125 10 0.4 4.3% 17.3 12.7 13.1 TBH16 100 1.3 12.9% 21.0 15.8 17.1 TBH17 10 1.2 11.5% 20.3 15.2 16.7 TBH17 10 1.1 11.6% 20.0 15.0 16.1 TBH17 10 1.1 10.6% 19.8 14.4 15.9 TBH17 10 0.9 9.4% 19.1 14.2 15.1 TBH17 10	TBH16 25	10	1.2	12.0%	19.2	14.2	15.4
TBH16 40 10 0.9 9.2% 18.6 13.7 14.6 TBH16 50 10 0.7 7.2% 18.1 13.3 14.1 TBH16 10 0.5 5.3% 17.6 12.9 13.5 TBH16 10 0.5 4.7% 17.4 12.8 13.3 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH16 10 0.4 4.3% 17.3 12.7 13.1 TBH16 10 0.4 4.3% 17.1 12.6 13.0 TBH17 10 1.3 12.9% 21.0 15.8 17.1 TBH17 10 1.2 11.5% 20.3 15.2 16.4 TBH17 10 1.1 11.0% 20.0 15.0 16.1 TBH17 10 1.1 10.6% 19.8 14.4 15.5 TBH17 10 0.7 7.4% 18.0	TBH16 30	10	1.1	10.5%	18.8	13.9	15.0
TBH16 50 10 0.7 7.2% 18.1 13.3 14.1 TBH16 75 10 0.6 6.0% 17.8 13.1 13.7 TBH16 100 10 0.5 5.3% 17.4 12.9 13.5 TBH16 150 0.4 4.3% 17.3 12.7 13.1 TBH16 175 10 0.4 4.3% 17.3 12.7 13.1 TBH17 0 0.4 4.0% 17.1 12.6 13.0 TBH17 10 1.3 12.9% 21.0 15.8 17.1 TBH17 10 1.2 11.5% 20.3 15.2 16.4 TBH17 10 1.1 11.0% 20.0 15.0 16.1 TBH17 10 1.1 10.6% 19.8 14.4 15.5 TBH17 10 0.9 9.4% 19.1 14.2 15.1 TBH17 10 0.7	TBH16 40	10	0.9	9.2%	18.6	13.7	14.6
TBH16 75 10 0.6 6.0% 17.8 13.1 13.7 TBH16 100 10 0.5 5.3% 17.6 12.9 13.5 TBH16 125 10 0.5 4.7% 17.4 12.8 13.3 TBH16 150 10 0.4 4.3% 17.3 12.7 13.1 TBH16 10 0.4 4.3% 17.0 12.6 13.0 TBH17 0 0.4 3.7% 17.0 12.5 12.9 TBH17 10 1.2 12.1% 20.6 15.5 16.7 TBH17 10 1.1 11.6% 20.3 15.2 16.4 TBH17 10 1.1 10.6% 19.8 14.8 15.9 TBH17 10 0.1 10 9.9% 19.4 14.5 15.5 TBH17 10 0.7 7.4% 18.9 14.0 14.9 TBH17 10	TBH16 50	10	0.7	7.2%	18.1	13.3	14.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 75	10	0.6	6.0%	17.8	13.1	13.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 100	10	0.5	5.3%	17.6	12.9	13.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 125	10	0.5	4.7%	17.4	12.8	13.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 150	10	0.4	4.3%	17.3	12.7	13.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 175	10	0.4	4.0%	17.1	12.6	13.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH16 200	10	0.4	3.7%	17.0	12.5	12.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH17 0	10	1.3	12.9%	21.0	15.8	17.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH17 5	10	1.2	12.1%	20.6	15.5	16.7
TBH17_15 10 1.1 11.0% 20.0 15.0 16.1 TBH17_20 10 1.1 10.6% 19.8 14.8 15.9 TBH17_25 10 1.0 9.9% 19.4 14.5 15.5 TBH17_30 10 0.9 9.4% 19.1 14.2 15.1 TBH17_40 10 0.9 8.9% 18.9 14.0 14.9 TBH17_10 10 0.7 7.4% 18.0 13.3 14.1 TBH17_100 10 0.7 7.6% 17.8 13.1 13.8 TBH17_150 10 0.6 6.4% 17.5 12.9 13.5 TBH17_100 10 0.6 6.4% 17.2 12.7 13.3 TBH17_200 10 0.6 5.9% 17.2 12.7 13.3 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_15 10 1.1 10.9% 23.1	TBH17 10	10	1.2	11.5%	20.3	15.2	16.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TBH17 15	10	1.1	11.0%	20.0	15.0	16.1
TBH17_25 10 1.0 9.9% 19.4 14.5 15.5 TBH17_30 10 0.9 9.4% 19.1 14.2 15.1 TBH17_40 10 0.9 8.9% 18.9 14.0 14.9 TBH17_50 10 0.8 8.0% 18.4 13.6 14.4 TBH17_100 10 0.7 7.4% 18.0 13.3 14.1 TBH17_100 10 0.7 7.0% 17.8 13.1 13.8 TBH17_125 10 0.7 6.6% 17.5 12.9 13.5 TBH17_100 10 0.6 6.4% 17.3 12.8 13.4 TBH17_175 10 0.6 5.9% 17.2 12.7 13.3 TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_15 10 1.4 10.9% 23.1	TBH17_20	10	1.1	10.6%	19.8	14.8	15.9
TBH17_30 10 0.9 9.4% 19.1 14.2 15.1 TBH17_40 10 0.9 8.9% 18.9 14.0 14.9 TBH17_50 10 0.8 8.0% 18.4 13.6 14.4 TBH17_50 10 0.7 7.4% 18.0 13.3 14.1 TBH17_125 10 0.7 7.4% 18.0 13.3 14.1 TBH17_125 10 0.7 6.6% 17.6 13.0 13.7 TBH17_150 10 0.6 6.4% 17.5 12.9 13.5 TBH17_175 10 0.6 6.1% 17.3 12.8 13.4 TBH18_10 10 1.9 19.0% 29.4 23.0 24.9 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_20 10 1.1 10.9% 23.1 17.5 18.6 TBH18_25 10 0.8 8.1% 20.7	TBH17_25	10	1.0	9.9%	19.4	14.5	15.5
TBH17_40 10 0.9 8.9% 18.9 14.0 14.9 TBH17_50 10 0.8 8.0% 18.4 13.6 14.4 TBH17_50 10 0.7 7.4% 18.0 13.3 14.1 TBH17_100 10 0.7 7.4% 18.0 13.3 14.1 TBH17_125 10 0.7 7.0% 17.8 13.1 13.8 TBH17_125 10 0.7 6.6% 17.6 13.0 13.7 TBH17_175 10 0.6 6.4% 17.3 12.8 13.4 TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_5 10 1.5 14.9% 26.3 20.3 21.8 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_15 10 0.7 7.0% 19.8	TBH17_30	10	0.9	9.4%	19.1	14.2	15.1
TBH17 50 10 0.8 8.0% 18.4 13.6 14.4 TBH17 50 10 0.7 7.4% 18.0 13.3 14.1 TBH17 10 10 0.7 7.4% 18.0 13.3 14.1 TBH17 10 10 0.7 7.4% 18.0 13.3 14.1 TBH17 10 10 0.7 6.6% 17.6 13.0 13.7 TBH17 10 0.6 6.4% 17.5 12.9 13.5 TBH17 10 0.6 6.1% 17.3 12.8 13.4 TBH17 200 10 0.6 5.9% 17.2 12.7 13.3 TBH18 0 10 1.5 14.9% 26.3 20.3 21.8 TBH18 10 1.1 10.9% 23.1 17.5 18.6 TBH18 10 1.0 9.7% 22.1 16.7 17.6	TBH17_40	10	0.9	8.9%	18.9	14.0	14.9
TBH17 T5 10 0.7 7.4% 18.0 13.3 14.1 TBH17 10 10 0.7 7.0% 17.8 13.1 13.8 TBH17 125 10 0.7 6.6% 17.6 13.0 13.7 TBH17 150 10 0.6 6.4% 17.5 12.9 13.5 TBH17 150 10 0.6 6.4% 17.3 12.8 13.4 TBH17 10 0.6 5.9% 17.2 12.7 13.3 TBH18 0 10 1.9 19.0% 29.4 23.0 24.9 TBH18 10 10 1.3 12.5% 24.4 18.6 19.9 TBH18 10 10 1.3 12.5% 24.1 18.6 19.9 TBH18 10 1.0 9.7% 22.1 16.7 17.6 TBH18 20 10 1.0 9.7% 19.1 14.1 <t< td=""><td>TBH17_50</td><td>10</td><td>0.8</td><td>8.0%</td><td>18.4</td><td>13.6</td><td>14.4</td></t<>	TBH17_50	10	0.8	8.0%	18.4	13.6	14.4
TBH17 TO TO TO TO TO TBH17 100 10 0.7 7.0% 17.8 13.1 13.8 TBH17 100 0.7 6.6% 17.6 13.0 13.7 TBH17 150 10 0.6 6.4% 17.5 12.9 13.5 TBH17 175 10 0.6 6.1% 17.3 12.8 13.4 TBH17 100 0.6 5.9% 17.2 12.7 13.3 TBH18 0 10 1.9 19.0% 29.4 23.0 24.9 TBH18 5 10 1.5 14.9% 26.3 20.3 21.8 TBH18 10 10 1.3 12.5% 24.4 18.6 19.9 TBH18 10 1.1 10.9% 23.1 17.5 18.6 TBH18 20 10 1.8 8.1% 20.7 15.5 16.3 TBH18 2	TBH17_75	10	0.7	7.4%	18.0	13.3	14.1
TBH17_125 10 0.7 6.6% 17.6 13.0 13.7 TBH17_125 10 0.6 6.4% 17.5 12.9 13.5 TBH17_150 10 0.6 6.4% 17.3 12.8 13.4 TBH17_175 10 0.6 6.1% 17.3 12.8 13.4 TBH17_100 10 0.6 5.9% 17.2 12.7 13.3 TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_10 10 1.5 14.9% 26.3 20.3 21.8 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_10 10 1.1 10.9% 23.1 17.5 18.6 TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_20 10 0.7 7.0% 19.8 14.7 15.4 TBH18_10 0.0 0.5 5.0% 17.9	TBH17 100	10	0.7	7.0%	17.8	13.1	13.8
TBH17_150 10 0.6 6.4% 17.5 12.9 13.5 TBH17_150 10 0.6 6.4% 17.3 12.8 13.4 TBH17_175 10 0.6 6.1% 17.3 12.8 13.4 TBH17_200 10 0.6 5.9% 17.2 12.7 13.3 TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_20 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_100 10 0.4 4.3% 17.2	TBH17 125	10	0.7	6.6%	17.6	13.0	13.7
TBH17_175 10 0.6 6.1% 17.3 12.8 13.4 TBH17_175 10 0.6 6.1% 17.3 12.8 13.4 TBH17_200 10 0.6 5.9% 17.2 12.7 13.3 TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_15 10 1.5 14.9% 26.3 20.3 21.8 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_20 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_150 10 0.3 3.5% 16.4	TBH17 150	10	0.6	6.4%	17.5	12.9	13.5
TBH17 200 10 0.6 5.9% 17.2 12.7 13.3 TBH18 0 10 1.9 19.0% 29.4 23.0 24.9 TBH18 10 1.5 14.9% 26.3 20.3 21.8 TBH18 10 1.3 12.5% 24.4 18.6 19.9 TBH18 10 1.1 10.9% 23.1 17.5 18.6 TBH18 15 10 1.1 10.9% 23.1 17.5 18.6 TBH18 20 10 1.0 9.7% 22.1 16.7 17.6 TBH18 20 10 0.8 8.1% 20.7 15.5 16.3 TBH18 20 10 0.7 7.0% 19.8 14.7 15.4 TBH18 30 10 0.7 7.0% 19.1 14.1 14.7 TBH18 10 0.5 5.0% 17.9 13.2 13.7 <	TBH17 175	10	0.6	6.1%	17.3	12.8	13.4
TBH18_0 10 1.9 19.0% 29.4 23.0 24.9 TBH18_5 10 1.5 14.9% 26.3 20.3 21.8 TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_25 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_100 10 0.4 4.3% 17.2 12.7 13.1 TBH18_150 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2	TBH17 200	10	0.6	5.9%	17.2	12.7	13.3
TBH18 5 10 1.5 14.9% 26.3 20.3 21.8 TBH18 10 10 1.3 12.5% 24.4 18.6 19.9 TBH18 10 1.1 10.9% 23.1 17.5 18.6 TBH18 10 1.0 9.7% 22.1 16.7 17.6 TBH18 20 10 0.8 8.1% 20.7 15.5 16.3 TBH18 30 10 0.7 7.0% 19.8 14.7 15.4 TBH18 40 10 0.6 6.2% 19.1 14.1 14.7 TBH18 50 10 0.5 5.0% 17.9 13.2 13.7 TBH18 50 10 0.4 4.3% 17.2 12.7 13.1 TBH18 100 10 0.4 3.8% 16.8 12.3 12.7 TBH18 100 0.3 3.2% 16.2 11.9 12.2	TBH18_0	10	1.9	19.0%	29.4	23.0	24.9
TBH18_10 10 1.3 12.5% 24.4 18.6 19.9 TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_20 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_50 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_50 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_125 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.2% 16.2	TBH18_5	10	1.5	14.9%	26.3	20.3	21.8
TBH18_15 10 1.1 10.9% 23.1 17.5 18.6 TBH18_15 10 1.0 9.7% 22.1 16.7 17.6 TBH18_25 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_50 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_125 10 0.3 3.5% 16.4 12.1 12.4 TBH18_125 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 2.9% 15.8	TBH18_10	10	1.3	12.5%	24.4	18.6	19.9
TBH18_20 10 1.0 9.7% 22.1 16.7 17.6 TBH18_25 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_75 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.4 12.1 12.4 TBH18_100 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 <td>TBH18_15</td> <td>10</td> <td>1.0</td> <td>10.9%</td> <td>23.1</td> <td>17.5</td> <td>18.6</td>	TBH18_15	10	1.0	10.9%	23.1	17.5	18.6
TBH18_25 10 0.8 8.1% 20.7 15.5 16.3 TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_75 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.4 12.1 12.4 TBH18_100 10 0.3 3.5% 16.4 12.1 12.4 TBH18_125 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_10 10 1.4 14.2% 18.5 <td>TBH18_20</td> <td>10</td> <td>1.0</td> <td>9.7%</td> <td>22.1</td> <td>16.7</td> <td>17.6</td>	TBH18_20	10	1.0	9.7%	22.1	16.7	17.6
TBH18_30 10 0.7 7.0% 19.8 14.7 15.4 TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 15.4 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_50 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.4 12.1 12.4 TBH18_100 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2%	TBH18_25	10	0.8	8.1%	20.7	15.5	16.3
TBH18_40 10 0.6 6.2% 19.1 14.1 14.7 TBH18_50 10 0.5 5.0% 17.9 13.2 13.7 TBH18_50 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.4 12.1 12.4 TBH18_100 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.0% 16.0 11.7 12.0 TBH18_150 10 0.3 2.9% 15.8 11.6 11.9 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 </td <td>TBH18_30</td> <td>10</td> <td>0.7</td> <td>7.0%</td> <td>19.8</td> <td>14.7</td> <td>15.4</td>	TBH18_30	10	0.7	7.0%	19.8	14.7	15.4
TBH18_10 10 0.5 5.0% 17.9 13.2 13.7 TBH18_50 10 0.4 4.3% 17.2 12.7 13.1 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.4 12.1 12.4 TBH18_150 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 </td <td>TBH18_40</td> <td>10</td> <td>0.6</td> <td>6.2%</td> <td>19.1</td> <td>14.1</td> <td>14.7</td>	TBH18_40	10	0.6	6.2%	19.1	14.1	14.7
TBH16_00 10 0.0 <	TBH18_50	10	0.5	5.0%	17.9	13.2	13.7
TBH16_10 10 0.4 3.8% 16.8 12.3 12.7 TBH18_100 10 0.4 3.8% 16.8 12.3 12.7 TBH18_125 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 <td>TBH18 75</td> <td>10</td> <td>0.0</td> <td>4.3%</td> <td>17.2</td> <td>12.7</td> <td>13.1</td>	TBH18 75	10	0.0	4.3%	17.2	12.7	13.1
TBH16_160 10 0.1 0.0% 10.0 12.0 12.1 TBH18_125 10 0.3 3.5% 16.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH18_100	10	0.4	3.8%	16.8	12.3	12 7
TBH16_120 10 0.0 0.0 0.0% 10.4 12.1 12.4 TBH18_150 10 0.3 3.2% 16.2 11.9 12.2 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH18 125	10	0.3	3.5%	16.0	12.0	12.1
TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_175 10 0.3 3.0% 16.0 11.7 12.0 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH18 150	10	0.3	3.2%	16.2	11.9	12.7
TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH18_200 10 0.3 2.9% 15.8 11.6 11.9 TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH18 175	10	0.3	3.0%	16.0	11 7	12.2
TBH19_0 10 2.5 24.7% 21.6 16.2 18.7 TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH18 200	10	0.3	2.9%	15.8	11.6	11.9
TBH19_5 10 1.4 14.2% 18.5 13.7 15.2 TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH19 0	10	25	24.0%	21.6	16.2	18 7
TBH19_10 10 1.1 10.5% 17.5 12.9 13.9 TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH19 5	10	1 4	14.7%	18.5	13.7	15.2
TBH19_15 10 0.8 8.5% 16.9 12.4 13.3 TBH19_20 10 0.7 7.2% 16.5 12.1 12.8 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH19 10	10	11	10.5%	17.5	12.9	13.9
TBH19_20 10 0.7 7.2% 16.5 12.1 13.3 TBH19_25 10 0.6 5.6% 16.0 11.7 12.3	TBH19 15	10	0.8	8.5%	16.9	12.0	13.3
TBH19 25 10 0.6 5.6% 16.0 11.7 12.8	TBH19 20	10	0.0	7 2%	16.5	12.7	12.8
	TBH19 25	10	0.7	5.6%	16.0	11 7	12.0

	Critical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
_	LUau	Change	Critical Load	Year	DM	DS	
TBH19 30	10	0.5	4.6%	15.7	11.5	12.0	
TBH19 40	10	0.4	4.0%	15.5	11.4	11.8	
TBH19 50	10	0.3	3.0%	15.2	11.1	11.4	
TBH19 75	10	0.2	2.5%	15.1	11.0	11.3	
TBH19 100	10	0.2	2.2%	15.0	10.9	11.2	
TBH19 125	10	0.2	1.9%	14.9	10.9	11.1	
TBH19 150	10	0.2	1.7%	14.8	10.8	11.0	
TBH19 175	10	0.2	1.6%	14.8	10.8	11.0	
TBH19 200	10	0.2	1.5%	14.8	10.8	10.9	
TBH20 0	10	0.7	6.5%	16.2	11.9	12.6	
TBH20 5	10	1.6	15.9%	19.0	14.1	15.7	
TBH20 10	10	1.3	12.9%	18.1	13.4	14.7	
TBH20 15	10	1.1	11.0%	17.6	13.0	14.1	
TBH20_20	10	1.0	9.6%	17.1	12.7	13.6	
TBH20 25	10	0.8	7.7%	16.6	12.2	13.0	
TBH20_30	10	0.7	6.5%	16.2	11.9	12.6	
TBH20_40	10	0.6	5.7%	16.0	11.8	12.3	
TBH20 50	10	0.4	4.3%	15.6	11.4	11.9	
TBH20 75	10	0.4	3.6%	15.4	11.3	11.6	
TBH20 100	10	0.3	3.1%	15.2	11.1	11.4	
TBH20 125	10	0.3	2.7%	15.1	11.1	11.3	
TBH20 150	10	0.2	2.4%	15.0	11.0	11.2	
TBH20 175	10	0.2	2.2%	15.0	10.9	11.2	
TBH20 200	10	0.2	2.1%	14.9	10.9	11.1	
TBH21 0	10	1.0	10.4%	18.4	13.7	14.7	
TBH21 5	10	0.9	9.5%	18.2	13.5	14.4	
TBH21 10	10	0.9	8.8%	18.0	13.3	14.2	
TBH21 15	10	0.8	8.2%	17.8	13.1	14.0	
TBH21 20	10	0.8	7.6%	17.6	13.0	13.8	
TBH21 25	10	0.7	6.8%	17.4	12.8	13.5	
TBH21 30	10	0.6	6.1%	17.2	12.7	13.3	
TBH21 40	10	0.6	5.6%	17.0	12.5	13.1	
TBH21 50	10	0.5	4.6%	16.8	12.3	12.8	
TBH21 75	10	0.4	3.9%	16.6	12.2	12.6	
TBH21 100	10	0.3	3.5%	16.4	12.0	12.4	
TBH21 125	10	0.3	3.1%	16.3	12.0	12.3	
TBH21 150	10	0.3	2.8%	16.2	11.9	12.2	
TBH21 175	10	0.3	2.5%	16.1	11.8	12.1	
TBH21 200	10	0.2	2.3%	16.1	11.8	12.0	
TBH22 0	10	1.6	15.6%	23.7	17.7	19.2	
TBH22 5	10	1.1	11.3%	21.8	16.2	17.3	
TBH22 10	10	0.9	9.3%	21.0	15.5	16.4	
TBH22 15	10	0.8	8.1%	20.4	15.1	15.9	
TBH22 20	10	0.7	7.2%	20.1	14.8	15.5	
TBH22 25	10	0.6	5.9%	19.5	14.3	14.9	
TBH22 30	10	0.5	5.1%	19.1	14.1	14.6	
TBH22 40	10	0.4	4.5%	18.9	13.8	14.3	
TBH22 50	10	0.4	3.6%	18.5	13.5	13.9	
TBH22 75	10	0.3	3.0%	18.2	13.3	13.6	
TBH22 100	10	0.3	2.6%	18.0	13.2	13.5	
TBH22 125	10	0.2	2.3%	17.9	13.1	13.3	
TBH22 150	10	0.2	2.1%	17.8	13.0	13.3	
TBH22 175	10	0.2	2.0%	17.7	13.0	13.2	

	Oritical	Road	Road Contribution		Total Concentration			
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year DM	Future year DS		
TBH22 200	10	0.2	1.8%	17.7	12.9	13.1		
TBH23 0	10	1.1	10.6%	21.5	16.0	17.0		
TBH23 5	10	0.7	7.1%	20.0	14.8	15.5		
TBH23 10	10	0.6	5.7%	19.4	14.3	14.8		
TBH23 15	10	0.5	4.8%	19.0	14.0	14.4		
TBH23 20	10	0.4	4.2%	18.7	13.7	14.2		
TBH23 25	10	0.3	3.4%	18.4	13.5	13.8		
TBH23 30	10	0.3	2.9%	18.1	13.3	13.6		
TBH23 40	10	0.2	2.5%	18.0	13.2	13.4		
TBH23 50	10	0.2	2.0%	17.7	13.0	13.2		
TBH23 75	10	0.2	1.7%	17.6	12.9	13.0		
TBH23 100	10	0.1	1.5%	17.5	12.8	13.0		
TBH23 125	10	0.1	1.3%	17.5	12.8	12.9		
TBH23 150	10	0.1	1.2%	17.4	12.7	12.8		
TBH23 175	10	0.1	1.1%	17.4	12.7	12.8		
TBH23 200	10	0.1	1.1%	17.3	12.7	12.8		
TBH24 0	10	1.4	13.5%	27.2	20.6	21.9		
TBH24 5	10	0.9	9.1%	23.2	17.2	18.1		
TBH24 10	10	0.7	7.3%	21.5	15.8	16.6		
TBH24 15	10	0.6	6.3%	20.4	15.1	15.7		
TBH24 20	10	0.6	5.5%	19.7	14.5	15.1		
TBH24 25	10	0.5	4.6%	18.8	13.8	14.3		
TBH24 30	10	0.4	4.0%	18.2	13.4	13.8		
TBH24 40	10	0.4	3.6%	17.8	13.1	13.4		
TBH24_50	10	0.3	3.0%	17.2	12.6	12.9		
TBH24 75	10	0.3	2.6%	16.8	12.3	12.6		
TBH24_100	10	0.2	2.3%	16.6	12.1	12.4		
TBH24_125	10	0.2	2.1%	16.4	12.0	12.2		
TBH24_150	10	0.2	2.0%	16.3	11.9	12.1		
TBH24_175	10	0.2	1.9%	16.1	11.8	12.0		
TBH24_200	10	0.2	1.8%	16.1	11.8	11.9		
TBH3_0	10	0.7	7.0%	22.3	17.0	17.7		
TBH3_5	10	0.5	4.7%	19.5	14.6	15.1		
TBH3_10	10	0.4	3.8%	18.4	13.7	14.1		
TBH3_15	10	0.3	3.3%	17.8	13.2	13.5		
TBH3_20	10	0.3	2.9%	17.3	12.8	13.1		
TBH3_25	10	0.3	2.5%	16.8	12.4	12.7		
TBH3_30	10	0.2	2.2%	16.5	12.2	12.4		
TBH3_40	10	0.2	2.0%	16.3	12.0	12.2		
TBH3_50	10	0.2	1.8%	15.9	11.7	11.9		
TBH3_75	10	0.2	1.6%	15.7	11.6	11.7		
TBH3_100	10	0.1	1.5%	15.6	11.5	11.6		
TBH3_125	10	0.1	1.4%	15.5	11.4	11.5		
TBH3_150	10	0.1	1.3%	15.4	11.3	11.5		
TBH3_175	10	0.1	1.3%	15.4	11.3	11.4		
TBH3_200	10	0.1	1.2%	15.4	11.3	11.4		
TBH4_0	10	2.3	23.2%	23.7	18.2	20.5		
TBH4_5	10	1.7	16.5%	21.2	16.0	17.7		
TBH4_10	10	1.3	13.2%	19.9	15.0	16.3		
TBH4_15	10	1.1	11.1%	19.1	14.3	15.4		
TBH4_20	10	1.0	9.7%	18.6	13.9	14.8		
TBH4_25	10	0.8	7.9%	17.9	13.3	14.1		
TBH4_30	10	0.7	6.7%	17.4	12.9	13.6		

	Critical	Road	Contribution	Total Concentration			
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year DM	Future year DS	
TBH4 40	10	0.6	5.9%	17.1	12.7	13.3	
TBH4_50	10	0.5	4.7%	16.7	12.3	12.7	
TBH4_75	10	0.4	4.0%	16.4	12.1	12.5	
TBH4 100	10	0.4	3.5%	16.2	11.9	12.3	
TBH4 125	10	0.3	3.2%	16.1	11.8	12.1	
TBH4 150	10	0.3	3.0%	16.0	11.8	12.1	
TBH4 175	10	0.3	2.8%	15.9	11.7	12.0	
TBH4 200	10	0.3	2.6%	15.9	11.7	11.9	
TBH5 0	10	0.3	2.6%	29.2	22.8	23.1	
TBH5 5	10	0.2	2.1%	26.7	20.7	20.9	
TBH5 10	10	0.2	1.9%	25.2	19.3	19.5	
TBH5_15	10	0.2	1.8%	24.1	18.4	18.6	
TBH5_20	10	0.2	1.8%	23.3	17.7	17.9	
TBH5_25	10	0.2	1.9%	22.1	16.7	16.9	
TBH5_30	10	0.2	2.1%	21.3	16.0	16.2	
TBH5_40	10	0.2	2.2%	20.6	15.4	15.6	
TBH5_50	10	0.3	2.6%	19.5	14.5	14.8	
TBH5_75	10	0.3	2.7%	18.8	14.0	14.2	
TBH5_100	10	0.3	2.8%	18.3	13.6	13.9	
TBH5_125	10	0.3	2.8%	18.0	13.3	13.6	
TBH5_150	10	0.3	2.8%	17.7	13.1	13.4	
TBH5_175	10	0.3	2.8%	17.5	12.9	13.2	
TBH5_200	10	0.3	2.8%	17.3	12.8	13.1	
TBH6_0	10	1.4	14.2%	23.8	17.7	19.1	
TBH6_5	10	1.2	12.3%	22.8	16.9	18.1	
TBH6_10	10	1.1	10.9%	21.9	16.2	17.3	
TBH6_15	10	1.0	9.8%	21.3	15.7	16.7	
TBH6_20	10	0.9	9.0%	20.7	15.3	16.2	
TBH6_25	10	0.8	7.7%	19.9	14.6	15.4	
TBH6_30	10	0.7	6.8%	19.3	14.1	14.8	
<u>1BH6_40</u>	10	0.6	6.1%	18.8	13.8	14.4	
<u>TBH6_50</u>	10	0.5	4.9%	18.0	13.1	13.6	
<u>TBH6_75</u>	10	0.4	4.2%	17.4	12.7	13.2	
TBH6_100	10	0.4	3.7%	17.0	12.5	12.8	
TBH6_125	10	0.3	3.3%	16.7	12.2	12.6	
TBH6_150	10	0.3	3.0%	16.5	12.1	12.4	
TBH0_175	10	0.3	2.8%	10.3	11.9	12.2	
	10	0.3	2.0%	24.2	11.0	12.1	
	10	1.3	10.0%	24.2	16.0	17.6	
	10	1.0	10.4 %	22.4	10.5	16.5	
TBH7_10	10	0.9	7 7%	21.5	15.0	15.8	
TBH7_20	10	0.0	6.0%	10.8	14.5	15.0	
TBH7_25	10	0.7	5.7%	18.0	13.8	14.4	
TBH7_30	10	0.0	J.7 %	18.3	13.0	13.8	
TBH7_40	10	0.0	4.570 4.4%	17.9	13.7	13.5	
TBH7 50	10	0.4	3.5%	17.1	12.5	12.8	
TBH7 75	10	0.3	3.0%	16.7	12.1	12.5	
TBH7 100	10	0.3	2.7%	16.4	11.9	12.2	
TBH7 125	10	0.2	2.4%	16.1	11.8	12.0	
TBH7 150	10	0.2	2.3%	16.0	11.7	11.9	
TBH7 175	10	0.2	2.1%	15.8	11.6	11.8	
TBH7_200	10	0.2	2.0%	15.7	11.5	11.7	

	Critical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
_	LOau	Change	Critical Load	Year	DM	DS	
TBH8 0	10	1.7	16.6%	20.6	15.5	17.2	
TBH8 5	10	1.1	10.5%	18.6	13.8	14.8	
TBH8 10	10	0.8	8.3%	17.8	13.2	14.0	
TBH8 15	10	0.7	7.1%	17.4	12.8	13.6	
TBH8 20	10	0.6	6.3%	17.1	12.6	13.3	
TBH8 25	10	0.5	5.3%	16.8	12.4	12.9	
TBH8 30	10	0.5	4.6%	16.6	12.2	12.7	
TBH8 40	10	0.4	4.2%	16.4	12.1	12.5	
TBH8 50	10	0.4	3.7%	16.3	11.9	12.3	
TBH8 75	10	0.3	3.3%	16.2	11.9	12.2	
TBH8 100	10	0.3	3.2%	16.1	11.8	12.1	
TBH8 125	10	0.3	3.1%	16.1	11.8	12.1	
TBH8 150	10	0.3	3.0%	16.1	11.8	12.1	
TBH8 175	10	0.3	2.9%	16.1	11.8	12.1	
TBH8 200	10	0.3	2.9%	16.1	11.8	12.1	
TBH9 0	10	0.9	9.1%	22.5	16.9	17.8	
TBH9 0	10	1.3	12.7%	25.0	18.8	20.1	
TBH9 5	10	1.0	10.2%	23.5	17.6	18.6	
TBH9 10	10	0.9	9.1%	22.6	16.9	17.8	
TBH9 15	10	0.8	8.4%	22.0	16.5	17.3	
TBH9 20	10	0.8	8.0%	21.6	16.2	17.0	
TBH9 25	10	0.7	7.4%	21.2	15.8	16.5	
TBH9_30	10	0.7	7.1%	20.9	15.6	16.3	
TBH9 40	10	0.7	7.0%	20.8	15.6	16.3	
TBH9 50	10	0.7	6.9%	21.0	15.7	16.4	
TBH9 75	10	0.7	7.1%	21.5	16.2	16.9	
TBH9 100	10	0.8	7.7%	22.5	17.0	17.8	
TBH9 125	10	0.9	8.9%	24.4	18.6	19.5	
TBH9 150	10	1.0	10.2%	26.4	20.4	21.4	
TBH9 175	10	1.0	10.4%	26.8	20.7	21.7	
TBH9 200	10	1.0	10.4%	26.9	20.7	21.8	
WFG4 0	10	-2.7	-26.9%	28.8	21.0	18.3	
WG1 0	10	-1.8	-17.6%	48.6	35.7	34.0	
WG1 5	10	-1.5	-14.7%	44.6	32.6	31.1	
WG1_10	10	-1.2	-12.4%	41.6	30.1	28.9	
WG1_15	10	-1 1	-10.7%	39.1	28.3	27.2	
WG1_20	10	-0.9	-9.4%	37.2	26.8	25.9	
WG1 25	10	-0.7	-7.4%	34.4	24.8	24.0	
WG1_30	10	-0.6	-6.1%	32.5	23.4	22.8	
WG1 40	10	-0.5	-5.2%	31.1	22.4	21.9	
WG1_50	10	-0.4	-3.7%	29.0	20.9	20.5	
WG1 75	10	-0.3	-2.9%	27.8	20.1	19.8	
WG1_100	10	-0.2	-2.4%	27.0	19.6	19.3	
WG1 125	10	-0.2	-2.1%	26.5	19.2	19.0	
WG1_150	10	-0.2	-1.8%	26.2	19.0	18.8	
WG1 175	10	-0.2	-1 7%	25.9	18.8	18.6	
WG1 200	10	_0.2	-1.5%	25.7	18.6	18.5	
WG2 0	10	-1.3	-12 9%	40.0	29.7	28.4	
WG2 5	10	_0.9	_9.1%	35.5	26.1	25.7	
WG2 10	10	-0.7	_7.2%	33.1	24.7	23.5	
WG2 15	10	-0.6	-6.0%	31.5	23.0	20.0	
WG2 20	10	-0.0	-5.0%	30 /	20.0	21.7	
WG2 25	10	-0.0	-4.0%	29.0	21 1	20.7	
		J. J. T	1.070	20.0		20.1	

	Oritical	Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	Load	Change	Critical Load	Year	DM	DS
WG2 30	10	-0.3	-3.3%	28.1	20.4	20.1
WG2 40	10	-0.3	-2.8%	27.4	19.9	19.7
WG2 50	10	-0.2	-2.0%	26.4	19.2	19.0
WG2 75	10	-0.2	-1.6%	25.8	18.8	18.6
WG2 100	10	-0.1	-1.3%	25.4	18.5	18.3
WG2 125	10	-0.1	-1.1%	25.1	18.3	18.2
WG3 0	10	-1.4	-14.1%	41.4	30.9	29.4
WG3 5	10	-1.0	-10.0%	36.5	26.9	25.9
WG3 10	10	-0.8	-7.9%	33.8	24.8	24.0
WG3 15	10	-0.7	-6.5%	32.1	23.5	22.8
WG3 20	10	-0.6	-5.6%	30.9	22.5	22.0
WG3 25	10	-0.4	-4.4%	29.3	21.4	20.9
WG3 30	10	-0.4	-3.6%	28.3	20.6	20.2
WG3 40	10	-0.3	-3.1%	27.6	20.1	19.8
WG3 50	10	-0.2	-2.3%	26.6	19.3	19.1
WG3 75	10	-0.2	-1.8%	26.0	18.9	18.7
WG3 100	10	-0.2	-1.5%	25.6	18.6	18.4
WG3 125	10	-0.1	-1.3%	25.3	18.4	18.3
WG3 150	10	-0.1	-1.2%	25.1	18.2	18.1
WG4 0	10	-9.1	-90.6%	39.6	29.2	20.2
WG4 5	10	-6.2	-61.6%	34.8	25.5	19.3
WG4 10	10	-4.8	-48.1%	32.5	23.7	18.9
WG4 15	10	-4.0	-39.8%	31.1	22.7	18.7
WG4 20	10	-3.4	-34.1%	30.1	21.9	18.5
WG4_25	10	-2.7	-26.8%	28.8	21.0	18.3
WG4_30	10	-2.2	-22.2%	28.0	20.4	18.1
WG4_40	10	-1.9	-19.0%	27.4	20.0	18.1
WG4_50	10	-1.4	-14.2%	26.6	19.3	17.9
WG4_75	10	-1.1	-11.3%	26.1	19.0	17.8
WG4_100	10	-1.0	-9.5%	25.8	18.7	17.8
WG4_125	10	-0.8	-8.3%	25.5	18.6	17.7
WG4_150	10	-0.7	-7.3%	25.3	18.4	17.7
WG4_175	10	-0.6	-6.5%	25.2	18.3	17.7
WG4_200	10	-0.6	-5.9%	25.1	18.2	17.7
WG5_0	10	-2.7	-27.4%	45.1	33.7	30.9
WG5_5	10	-2.3	-22.6%	41.0	30.4	28.1
WG5_10	10	-2.0	-20.1%	38.7	28.6	26.6
WG5_15	10	-1.8	-18.4%	37.3	27.5	25.6
WG5_20	10	-1.7	-17.3%	36.3	26.6	24.9
WG5_25	10	-1.6	-15.8%	34.8	25.5	23.9
WG5_30	10	-1.5	-14.7%	33.7	24.7	23.2
WG5_40	10	-1.4	-14.0%	32.9	24.1	22.7
WG5_50	10	-1.3	-12.7%	31.5	23.0	21.7
WG5_75	10	-1.2	-11.8%	30.5	22.3	21.1
WG5_100	10	-1.1	-11.3%	29.8	21.8	20.6
WG5_125	10	-1.1	-11.0%	29.2	21.3	20.2
WG5_150	10	-1.1	-11.0%	28.8	21.0	19.9
WG5_175	10	-1.1	-11.4%	28.5	20.7	19.6
WG5_200	10	-1.3	-12.5%	28.3	20.6	19.4

Table E-3 Scenario 6a: Predicted 'in isolation' Annual Nitrogen Deposition at Modelled Ecological Receptors (Change >1% of Critical Load)

		Road	Contribution		Total Concentr	ation
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
•	Load	Change	Critical Load	Year	DM	DS
CB1 0	10	-0.4	-4.3%	46.5	32.7	32.3
CB1 5	10	-0.4	-3.8%	45.1	31.7	31.3
CB1 10	10	-0.3	-3.5%	44.0	30.8	30.5
CB1 15	10	-0.3	-3.2%	43.0	30.1	29.8
CB1 20	10	-0.3	-2.9%	42.1	29.5	29.2
CB1 25	10	-0.3	-2.6%	40.7	28.6	28.3
CB1_30	10	-0.2	-2.3%	39.5	27.8	27.5
CB1 40	10	-0.2	-2.2%	38.5	27.1	26.9
CB1 50	10	-0.2	-1.8%	36.7	26.0	25.8
CB1 75	10	-0.2	-1.6%	35.5	25.2	25.0
CB1_100	10	-0.1	-1.4%	34.6	24.6	24.5
CB1_125	10	-0.1	-1.2%	33.9	24.2	24.0
CB1_150	10	-0.1	-1.1%	33.3	23.8	23.7
TAP11 0	10	1.0	10.0%	48.9	43.3	44.3
TAP11 5	10	0.8	8.4%	44.1	38.6	39.4
TAP11 10	10	0.7	7.4%	41.0	35.4	36.1
TAP11 15	10	0.7	6.6%	38.5	32.9	33.6
TAP11 20	10	0.6	6.0%	36.6	31.0	31.6
TAP11 25	10	0.5	5.1%	33.7	28.0	28.5
TAP11 30	10	0.4	4.4%	31.5	25.9	26.3
TAP11 40	10	0.4	3.9%	29.9	24.3	24.7
TAP11 50	10	0.3	3.1%	27.2	21.7	22.0
TAP11 75	10	0.2	2.5%	25.6	20.3	20.5
TAP11 100	10	0.2	2.1%	25.0	19.8	20.0
TAP11 125	10	0.2	1.7%	25.4	20.5	20.7
TAP11 150	10	0.1	1.3%	29.7	25.3	25.4
TAP11 175	10	0.1	1.3%	24.8	20.1	20.2
TAP11_200	10	0.1	1.3%	23.0	18.3	18.4
TAP13_0	10	0.3	2.6%	33.3	30.5	30.7
TAP13_5	10	0.2	2.1%	29.5	26.3	26.5
TAP13_10	10	0.2	1.8%	27.1	23.7	23.9
TAP13 15	10	0.2	1.6%	25.5	22.0	22.2
TAP13_20	10	0.1	1.4%	24.3	20.7	20.9
TAP13_25	10	0.1	1.2%	22.6	18.9	19.1
TAP14 0	10	0.5	4.7%	30.5	28.3	28.8
TAP14_5	10	0.4	4.2%	28.8	26.3	26.7
TAP14_10	10	0.4	3.8%	27.5	24.7	25.1
TAP14_15	10	0.4	3.5%	26.4	23.4	23.8
TAP14_20	10	0.3	3.2%	25.5	22.4	22.7
TAP14_25	10	0.3	2.8%	24.1	20.8	21.1
TAP14_30	10	0.3	2.5%	23.1	19.6	19.9
TAP14_40	10	0.2	2.3%	22.3	18.7	18.9
TAP14_50	10	0.2	1.8%	20.7	17.0	17.2
TAP14_75	10	0.2	1.6%	19.7	16.0	16.1
TAP14_100	10	0.1	1.3%	19.0	15.2	15.4
TAP14_125	10	0.1	1.2%	18.5	14.7	14.8
TAP14_150	10	0.1	1.1%	18.0	14.2	14.3
TAP4_0	10	0.1	1.3%	25.7	22.4	22.5
TAP4_5	10	0.1	1.3%	24.4	20.7	20.9
TAP4_10	10	0.1	1.2%	23.5	19.7	19.8
TAP4_15	10	0.1	1.2%	22.8	18.9	19.0

	Critical	Road	Contribution		Total Concentr	ation
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	LUau	Change	Critical Load	Year	DM	DS
TAP4_20	10	0.1	1.2%	22.3	18.3	18.4
TAP4_25	10	0.1	1.1%	21.6	17.5	17.6
TAP4_30	10	0.1	1.1%	21.0	16.9	17.0
TAP4_40	10	0.1	1.1%	20.6	16.4	16.5
TAP5_0	10	0.1	1.4%	27.9	20.9	21.0
TAP5_5	10	0.1	1.4%	26.8	20.0	20.1
TAP5_10	10	0.1	1.3%	26.0	19.4	19.5
TAP5_15	10	0.1	1.3%	25.4	18.9	19.0
TAP5_20	10	0.1	1.2%	24.8	18.5	18.6
TAP5_25	10	0.1	1.2%	24.0	17.8	17.9
TAP5_30	10	0.1	1.2%	23.3	17.3	17.4
TAP5_40	10	0.1	1.1%	22.7	16.9	17.0
TAP5 50	10	0.1	1.1%	21.7	16.1	16.2
TAP6 0	10	0.8	7.9%	46.1	39.8	40.6
TAP6 5	10	0.7	6.7%	41.5	35.2	35.8
TAP6 10	10	0.6	5.9%	38.4	32.0	32.6
TAP6 15	10	0.5	5.3%	36.0	29.6	30.2
TAP6 20	10	0.5	4.8%	34.1	27.7	28.2
TAP6 25	10	0.4	4.0%	31.1	24.9	25.3
TAP6 30	10	0.3	3.5%	29.1	22.8	23.2
TAP6 40	10	0.3	3.0%	27.4	21.3	21.6
TAP6 50	10	0.2	2.3%	24.6	18.7	19.0
TAP6 75	10	0.2	1.9%	22.8	17.1	17.3
TAP6 100	10	0.2	1.6%	21.5	16.0	16.2
TAP6 125	10	0.1	1.3%	20.5	15.2	15.4
TAP6 150	10	0.1	1.2%	19.8	14.6	14.7
TAP6 175	10	0.1	1.1%	19.2	14.2	14.3
TAP7 0	10	0.8	8.3%	47.6	41.5	42.4
TAP7 5	10	0.7	7.2%	43.3	37.2	37.9
TAP7 10	10	0.6	6.4%	40.1	34.1	34.7
TAP7 15	10	0.6	5.8%	37.7	31.6	32.2
TAP7 20	10	0.5	5.2%	35.7	29.7	30.2
TAP7 25	10	0.4	4.4%	32.7	26.7	27.1
TAP7_30	10	0.4	3.9%	30.5	24.5	24.9
TAP7 40	10	0.3	3.4%	28.7	22.9	23.2
TAP7 50	10	0.3	2.7%	25.5	19.9	20.2
TAP7 75	10	0.2	2.2%	23.5	18.1	18.3
TAP7 100	10	0.2	1.8%	22.0	16.8	17.0
TAP7 125	10	0.2	1.6%	21.0	15.9	16.1
TAP7 150	10	0.1	1.4%	20.1	15.2	15.3
TAP7 175	10	0.1	1.2%	19.4	14.6	14.8
TAP7 200	10	0.1	1.1%	18.9	14.2	14.3
TBH10_0	10	-0.1	-1.1%	37.1	31.0	30.9
TBH10_5	10	-0.1	-1.1%	32.8	26.9	26.8
TBH11_0	10	-0.3	-3.4%	33.0	26.3	26.0
TBH11 5	10	-0.3	-2.5%	30.4	24.0	23.7
TBH11 10	10	-0.2	-1.9%	28.6	22.5	22.3
TBH11 15	10	-0.2	-1.6%	27.4	21.5	21.4
TBH11 20	10	-0.1	-1.4%	26.4	20.8	20.6
TBH13 0	10	-0.1	-1.3%	33.7	27.0	26.9
TBH13_5	10	-0.1	-1.1%	30.9	24.5	24.4
TBH14 0	10	0.1	1.4%	17.8	14.0	14.1
TBH14 5	10	0.1	1.1%	17.4	13.6	13.7

	Oritical	Road	Road Contribution		Total Concentration			
Receptor	Load	Absolute Change	Change as % of	Base Year	Future Year	Future year		
TBH16 10	10		1 1%	20.6	17.2	17.3		
TBH18 0	10	0.1	1.170	20.0	24.7	24.9		
TBH18 5	10	0.2	1.0%	26.3	24.7	24.5		
TBH10_0	10	13	12.6%	20.5	17 /	18.7		
TBH19_0	10	0.7	7 1%	18.5	14.5	15.7		
TBH10_10	10	0.7	5.2%	17.5	14.5	13.2		
TBH10 15	10	0.0	J.2 /0	16.9	12.4	13.3		
TBH10 20	10	0.4	3.5%	16.5	12.5	12.8		
TBH10_25	10	0.3	2.6%	16.0	12.0	12.0		
TBH19_30	10	0.0	2.0%	15.7	11.8	12.0		
TBH19_40	10	0.2	1.8%	15.5	11.6	11.8		
TBH19_50	10	0.2	1.3%	15.0	11.3	11.0		
TBH20_0	10	0.1	3.1%	16.2	12.3	12.6		
TBH20_5	10	0.0	8.0%	19.0	14.9	15.7		
TBH20_0	10	0.0	6.5%	18.0	14.0	14.7		
TBH20_15	10	0.5	5.5%	17.6	13.5	14.1		
TBH20_20	10	0.5	4.7%	17.0	13.1	13.6		
TBH20_25	10	0.0	3.8%	16.6	12.6	13.0		
TBH20_30	10	0.3	3.1%	16.2	12.3	12.6		
TBH20_40	10	0.3	2.7%	16.0	12.0	12.3		
TBH20_50	10	0.0	2.0%	15.6	11.7	11.9		
TBH20_75	10	0.2	1.6%	15.4	11.5	11.6		
TBH20_100	10	0.1	1.3%	15.2	11.3	11.4		
TBH20 125	10	0.1	1.2%	15.1	11.2	11.3		
TBH21 0	10	0.5	5.1%	18.4	14.2	14.7		
TBH21 5	10	0.5	4.7%	18.2	13.9	14.4		
TBH21 10	10	0.4	4.3%	18.0	13.7	14.2		
TBH21 15	10	0.4	4.0%	17.8	13.6	14.0		
TBH21 20	10	0.4	3.7%	17.6	13.4	13.8		
TBH21 25	10	0.3	3.3%	17.4	13.2	13.5		
TBH21 30	10	0.3	2.9%	17.2	13.0	13.3		
TBH21 40	10	0.3	2.6%	17.0	12.8	13.1		
TBH21 50	10	0.2	2.2%	16.8	12.6	12.8		
TBH21 75	10	0.2	1.8%	16.6	12.4	12.6		
TBH21 100	10	0.2	1.5%	16.4	12.2	12.4		
TBH21 125	10	0.1	1.3%	16.3	12.1	12.3		
TBH21_150	10	0.1	1.2%	16.2	12.0	12.2		
TBH22_0	10	0.1	1.4%	23.7	19.1	19.2		
TBH24_0	10	0.2	2.0%	27.2	21.7	21.9		
TBH24_5	10	0.1	1.3%	23.2	18.0	18.1		
TBH3_0	10	-0.4	-3.8%	22.3	18.1	17.7		
TBH3_5	10	-0.2	-2.4%	19.5	15.3	15.1		
TBH3_10	10	-0.2	-1.8%	18.4	14.3	14.1		
TBH3_15	10	-0.1	-1.5%	17.8	13.7	13.5		
TBH3_20	10	-0.1	-1.3%	17.3	13.3	13.1		
TBH4_0	10	0.4	4.3%	23.7	20.1	20.5		
TBH4_5	10	0.3	3.0%	21.2	17.4	17.7		
TBH4_10	10	0.2	2.3%	19.9	16.1	16.3		
TBH4_15	10	0.2	1.9%	19.1	15.3	15.4		
TBH4_20	10	0.2	1.6%	18.6	14.7	14.8		
TBH4_25	10	0.1	1.3%	17.9	13.9	14.1		
TBH5_0	10	-0.1	-1.4%	29.2	23.2	23.1		
TBH5_5	10	-0.2	-2.3%	26.7	21.1	20.9		

	Critical	Road Contribution			Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
	LUau	Change	Critical Load	Year	DM	DS	
TBH5_10	10	-0.3	-2.7%	25.2	19.8	19.5	
TBH5_15	10	-0.3	-3.0%	24.1	18.9	18.6	
TBH5_20	10	-0.3	-3.1%	23.3	18.2	17.9	
TBH5_25	10	-0.3	-3.1%	22.1	17.2	16.9	
TBH5_30	10	-0.3	-3.1%	21.3	16.5	16.2	
TBH5_40	10	-0.3	-2.9%	20.6	15.9	15.6	
TBH5_50	10	-0.3	-2.6%	19.5	15.0	14.8	
TBH5_75	10	-0.2	-2.3%	18.8	14.5	14.2	
TBH5_100	10	-0.2	-2.0%	18.3	14.1	13.9	
TBH5_125	10	-0.2	-1.8%	18.0	13.8	13.6	
TBH5_150	10	-0.2	-1.6%	17.7	13.5	13.4	
TBH5_175	10	-0.2	-1.5%	17.5	13.4	13.2	
TBH5_200	10	-0.1	-1.4%	17.3	13.2	13.1	
WG1_0	10	0.2	1.8%	48.6	33.8	34.0	
WG1_5	10	0.1	1.5%	44.6	30.9	31.1	
WG1_10	10	0.1	1.3%	41.6	28.8	28.9	
WG1_15	10	0.1	1.1%	39.1	27.1	27.2	
WG2_0	10	0.1	1.2%	40.0	28.3	28.4	
WG3_0	10	0.1	1.4%	41.4	29.3	29.4	
WG4_0	10	0.2	1.9%	39.6	20.0	20.2	
WG4_5	10	0.1	1.3%	34.8	19.2	19.3	

Table E-4 Scenario 6a: Predicted 'in combination' Annual Nitrogen Deposition at Modelled Ecological Receptors (Change >1% of Critical Load)

	Oritical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
	LUau	Change	Critical Load	Year	- DN	DS	
CB1_0	10	-1.2	-11.7%	46.5	33.4	32.3	
CB1_5	10	-1.1	-10.9%	45.1	32.4	31.3	
CB1_10	10	-1.0	-10.3%	44.0	31.5	30.5	
CB1_15	10	-1.0	-9.7%	43.0	30.8	29.8	
CB1_20	10	-0.9	-9.2%	42.1	30.2	29.2	
CB1_25	10	-0.8	-8.2%	40.7	29.1	28.3	
CB1_30	10	-0.7	-7.3%	39.5	28.3	27.5	
CB1_40	10	-0.7	-6.5%	38.5	27.6	26.9	
CB1_50	10	-0.5	-5.0%	36.7	26.3	25.8	
CB1_75	10	-0.4	-4.1%	35.5	25.4	25.0	
CB1_100	10	-0.4	-3.5%	34.6	24.8	24.5	
CB1_125	10	-0.3	-3.1%	33.9	24.3	24.0	
CB1_150	10	-0.3	-2.8%	33.3	24.0	23.7	
CB1_175	10	-0.3	-2.6%	32.9	23.7	23.4	
CB1_200	10	-0.2	-2.4%	32.5	23.4	23.2	
TAP1_0	10	-4.7	-47.3%	22.4	17.0	12.3	
TAP1_5	10	-3.4	-34.4%	20.4	15.4	11.9	
TAP1 10	10	-2.8	-27.9%	19.4	14.5	11.8	
TAP1 15	10	-2.4	-23.5%	18.8	14.0	11.6	
TAP1 20	10	-2.0	-20.3%	18.3	13.6	11.5	
TAP1 25	10	-1.6	-15.9%	17.6	13.0	11.4	
TAP1 30	10	-1.3	-13.0%	17.1	12.6	11.3	
TAP1 40	10	-1.1	-10.9%	16.8	12.4	11.3	
TAP1 50	10	-0.8	-7.7%	16.3	12.0	11.2	
TAP1 75	10	-0.6	-5.8%	16.0	11.7	11.2	
TAP1 100	10	-0.5	-4.5%	15.8	11.6	11.1	
TAP1 125	10	-0.4	-3.6%	15.7	11.5	11.1	
TAP1 150	10	-0.3	-3.0%	15.6	11.4	11.1	
TAP1 175	10	-0.2	-2.4%	15.5	11.3	11.1	
TAP1 200	10	-0.2	-2.0%	15.4	11.3	11.1	
TAP10 0	10	-0.5	-4.6%	16.7	12.3	11.8	
TAP10 5	10	-0.2	-2.0%	16.1	11.8	11.6	
TAP10 40	10	0.1	1.1%	15.3	11.2	11.3	
TAP10 50	10	0.1	1.4%	15.2	11.1	11.3	
TAP10_75	10	0.2	1.6%	15.1	11.1	11.2	
TAP10_100	10	0.2	1.7%	15.1	11.0	11.2	
TAP10_125	10	0.2	1.8%	15.1	11.0	11.2	
TAP10_150	10	0.2	1.8%	15.0	11.0	11.2	
TAP10_175	10	0.2	1.8%	15.0	11.0	11.2	
TAP10_200	10	0.2	1.8%	15.0	11.0	11.1	
TAP11_0	10	-0.2	-2.3%	16.3	12.0	11.8	
TAP11 0	10	3.3	32.7%	48.9	41.1	44.3	
TAP11_5	10	2.8	28.4%	44.1	36.6	39.4	
TAP11_10	10	2.6	25.6%	41.0	33.5	36.1	
TAP11 15	10	2.3	23.3%	38.5	31.2	33.6	
TAP11 20	10	2.2	21.6%	36.6	29.4	31.6	
TAP11_25	10	0.1	1.2%	15.5	11.4	11.5	
TAP11 25	10	1.9	18.9%	33.7	26.6	28.5	
TAP11 30	10	0.2	1.5%	15.4	11.3	11.5	
TAP11 30	10	1.7	17.0%	31.5	24.6	26.3	

	Critical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
	LUau	Change	Critical Load	Year	- DN	DS	
TAP11_40	10	0.2	1.7%	15.3	11.3	11.4	
TAP11_40	10	1.6	15.5%	29.9	23.1	24.7	
TAP11_50	10	0.2	2.0%	15.3	11.2	11.4	
TAP11 50	10	1.3	13.3%	27.2	20.7	22.0	
TAP11 75	10	0.2	2.2%	15.2	11.1	11.4	
TAP11 75	10	1.2	12.3%	25.6	19.3	20.5	
TAP11 100	10	0.2	2.3%	15.2	11.1	11.3	
TAP11 100	10	1.2	12.4%	25.0	18.8	20.0	
TAP11 125	10	0.2	2.3%	15.1	11.1	11.3	
TAP11 125	10	1.5	14.7%	25.4	19.2	20.7	
TAP11 150	10	0.2	2.4%	15.1	11.1	11.3	
TAP11 150	10	2.5	25.1%	29.7	22.9	25.4	
TAP11 175	10	0.2	2 4%	15.1	11 1	11.3	
TAP11 175	10	1.5	15.1%	24.8	18.7	20.2	
TAP11 200	10	0.2	2.4%	15.1	11.0	11 3	
TAP11 200	10	1.2	11 9%	23.0	17.2	18.4	
TAP12 5	10	0.2	2.2%	17.6	13.1	13.3	
TAP12_3	10	0.2	2.2/0	17.0	12.0	12.0	
TAP12_10	10	0.3	3.1/0	17.4	12.9	13.2	
TAP12_13	10	0.4	3.0 /0	17.3	12.0	13.2	
TAP12_20	10	0.4	4.0%	17.2	12.7	13.1	
TAP12_23	10	0.4	4.3%	17.1	12.0	13.1	
TAP12_30	10	0.5	4.7%	17.0	12.0	13.0	
TAP12_40	10	0.5	4.9%	16.9	12.5	13.0	
TAP12_50	10	0.5	5.2%	16.8	12.4	12.9	
TAP12_75	10	0.5	5.3%	16.7	12.4	12.9	
TAP12_100	10	0.5	5.3%	16.6	12.3	12.8	
TAP12_125	10	0.5	5.3%	16.6	12.3	12.8	
TAP12_150	10	0.5	5.3%	16.5	12.2	12.7	
TAP12_175	10	0.5	5.2%	16.5	12.2	12.7	
TAP12_200	10	0.5	5.2%	16.4	12.1	12.7	
TAP13_0	10	3.9	38.7%	33.3	26.9	30.7	
TAP13_5	10	3.1	30.9%	29.5	23.4	26.5	
TAP13_10	10	2.6	26.2%	27.1	21.3	23.9	
TAP13_15	10	2.3	23.0%	25.5	19.9	22.2	
TAP13_20	10	2.1	20.5%	24.3	18.8	20.9	
TAP13_25	10	1.7	17.2%	22.6	17.3	19.1	
TAP13_30	10	1.5	14.8%	21.4	16.3	17.8	
TAP13_40	10	1.3	13.1%	20.5	15.6	16.9	
TAP13_50	10	1.0	10.4%	19.1	14.4	15.4	
TAP13_75	10	0.9	8.8%	18.3	13.7	14.6	
TAP13_100	10	0.8	7.7%	17.7	13.2	14.0	
TAP13_125	10	0.7	6.9%	17.3	12.9	13.6	
TAP13_150	10	0.6	6.3%	17.0	12.6	13.2	
TAP13_175	10	0.6	5.8%	16.7	12.4	13.0	
TAP13_200	10	0.5	5.4%	16.5	12.2	12.8	
TAP14_0	10	5.3	52.9%	30.5	23.5	28.8	
TAP14_5	10	4.7	47.2%	28.8	22.0	26.7	
TAP14_10	10	4.3	42.7%	27.5	20.8	25.1	
TAP14 15	10	3.9	39.1%	26.4	19.9	23.8	
TAP14 20	10	3.6	36.1%	25.5	19.1	22.7	
TAP14 25	10	3.1	31.5%	24.1	17.9	21.1	
TAP14_30	10	2.8	28.0%	23.1	17.1	19.9	

	Critical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
	Luau	Change	Critical Load	Year	- DN	DS	
TAP14_40	10	2.5	25.2%	22.3	16.4	18.9	
TAP14_50	10	2.0	20.3%	20.7	15.2	17.2	
TAP14_75	10	1.7	17.1%	19.7	14.4	16.1	
TAP14 100	10	1.5	14.8%	19.0	13.9	15.4	
TAP14 125	10	1.3	13.1%	18.5	13.5	14.8	
TAP14 150	10	1.2	11.8%	18.0	13.2	14.3	
TAP14 175	10	1.1	10.7%	17.7	12.9	14.0	
TAP14 200	10	1.0	9.8%	17.4	12.7	13.7	
TAP2 0	10	-5.1	-51.3%	22.4	17.1	11.9	
TAP2 5	10	-4.1	-41.3%	20.9	15.8	11.7	
TAP2 10	10	-3.5	-35.2%	20.0	15.0	11.5	
TAP2 15	10	-3.1	-30.9%	19.3	14.5	11.4	
TAP2 20	10	-2.8	-27.6%	18.8	14.0	11.3	
TAP2 25	10	-2.3	-22.9%	18.0	13.5	11.0	
TAP2 30	10	-2.0	_19.7%	17.6	13.0	11.2	
TAP2 40	10	-2.0	-17.3%	17.0	12.7	11.0	
TAP2 50	10	_1.7	-13.2%	16.6	12.7	10.9	
TAP2_30	10	-1.5	-10.270	16.0	11.0	10.9	
TAP2_10	10	-1.1	-10.0%	16.2	11.5	10.0	
TAP2_100	10	-0.9	-9.370	10.0	11.7	10.0	
TAP2_120	10	-0.0	-0.1%	15.0	11.0	10.0	
TAP2_130	10	-0.7	-7.3%	15.7	11.5	10.0	
TAP2_175	10	-0.7	-0.0%	15.5	11.4	10.0	
TAP2_200	10	-0.6	-0.0%	15.5	11.4	10.8	
	10	5.0	56.0%	22.7	17.2	22.8	
TAP3_3	10	3.7	37.3%	20.4	15.3	19.0	
TAP3_10	10	3.0	29.7%	19.4	14.5	17.4	
TAP3_15	10	2.5	25.0%	18.8	14.0	16.4	
<u>TAP3_20</u>	10	2.2	21.8%	18.4	13.6	15.8	
TAP3_25	10	1.8	17.6%	17.8	13.1	14.9	
<u>TAP3_30</u>	10	1.5	14.9%	17.4	12.8	14.3	
TAP3_40	10	1.3	13.1%	17.2	12.6	13.9	
TAP3_50	10	1.0	10.2%	16.7	12.2	13.3	
TAP3_75	10	0.8	8.5%	16.4	12.0	12.9	
TAP3_100	10	0.7	7.3%	16.2	11.8	12.6	
TAP3_125	10	0.7	6.5%	16.0	11.7	12.4	
TAP3_150	10	0.6	5.9%	15.9	11.6	12.2	
TAP3_175	10	0.5	5.4%	15.7	11.5	12.0	
TAP3_200	10	0.5	5.0%	15.6	11.4	11.9	
TAP4_0	10	3.0	29.5%	25.7	19.5	22.5	
TAP4_5	10	2.4	24.5%	24.4	18.4	20.9	
TAP4_10	10	2.1	21.3%	23.5	17.7	19.8	
TAP4_15	10	1.9	19.1%	22.8	17.1	19.0	
TAP4_20	10	1.7	17.4%	22.3	16.7	18.4	
TAP4_25	10	1.5	15.1%	21.6	16.1	17.6	
TAP4_30	10	1.4	13.6%	21.0	15.6	17.0	
TAP4_40	10	1.2	12.5%	20.6	15.3	16.5	
TAP4_50	10	1.1	10.5%	19.8	14.6	15.7	
TAP4_75	10	0.9	9.2%	19.2	14.2	15.1	
TAP4_100	10	0.8	8.2%	18.8	13.8	14.6	
TAP4_125	10	0.7	7.4%	18.4	13.5	14.3	
TAP4 150	10	0.7	6.8%	18.1	13.3	14.0	
TAP4_175	10	0.6	6.3%	17.8	13.1	13.7	

	Critical	Road	Contribution	Total Concentration		
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year - DN	Future year
TAP4 200	10	0.6	5.8%	17 7	13.0	13.6
TAP5 0	10	-0.5	-5.2%	27.9	21.5	21.0
TAP5 5	10	-0.0	-4.2%	26.8	20.6	20.1
TAP5 10	10	-0.4	-4.2%	26.0	19.9	19.5
TAP5 15	10	-0.4	-3.0%	25.0	19.3	19.0
TAP5 20	10	-0.3	-2.5%	24.8	18.8	18.6
TAP5 25	10	-0.2	-2.5%	24.0	18.1	17.9
TAP5 75	10	0.2	1.3%	20.9	15.6	15.7
TAP5 100	10	0.1	1.8%	20.0	15.0	15.3
TAP5 125	10	0.2	2.0%	20.1	14.9	15.0
TAP5 150	10	0.2	2.2%	19.8	14.6	14.8
TAP5 175	10	0.2	2.3%	19.5	14.0	14.6
TAP5 200	10	0.2	2.0%	19.2	14.2	14.0
TAP6 0	10	2.8	28.1%	46 1	37.8	40.6
TAP6 5	10	2.3	23.4%	41.5	33.5	35.8
TAP6 10	10	2.0	20.2%	38.4	30.6	32.6
TAP6 15	10	1.8	17.7%	36.0	28.4	30.2
TAP6 20	10	1.0	15.7%	34.1	26.4	28.2
TAP6 25	10	1.0	12.8%	31 1	20.0	25.2
TAP6 30	10	1.0	10.7%	29.1	27.0	23.2
TAP6 40	10	0.9	9.1%	27.4	20.7	21.6
TAP6 50	10	0.5	6.4%	24.6	18.3	19.0
TAP6 75	10	0.0	4.8%	27.8	16.8	17.3
TAP6 100	10	0.0	3.8%	21.5	15.8	16.2
TAP6 125	10	0.4	3.0%	20.5	15.0	15.2
TAP6 150	10	0.0	2.6%	19.8	14.5	14.7
TAP6 175	10	0.0	2.3%	19.2	14.0	14.3
TAP6 200	10	0.2	1.9%	18.7	13.7	13.9
TAP7 0	10	3.4	33.8%	47.6	39.0	42.4
TAP7_5	10	2.9	29.4%	43.3	35.0	37.9
TAP7 10	10	2.0	26.1%	40.1	32.1	34.7
TAP7_15	10	2.0	23.6%	37.7	29.8	32.2
TAP7 20	10	22	21.6%	35.7	28.0	30.2
TAP7 25	10	1.9	18.5%	32.7	25.3	27.1
TAP7 30	10	1.0	16.3%	30.5	23.3	24.9
TAP7 40	10	1.0	14.5%	28.7	21.8	23.2
TAP7 50	10	11	11.5%	25.5	19.0	20.2
TAP7 75	10	0.9	9.5%	23.5	17.4	18.3
TAP7 100	10	0.8	8.1%	22.0	16.2	17.0
TAP7 125	10	0.7	7.1%	21.0	15.4	16.1
TAP7 150	10	0.6	6.3%	20.1	14.7	15.3
TAP7 175	10	0.6	5.7%	19.4	14.2	14.8
TAP7 200	10	0.5	5.2%	18.9	13.8	14.3
TAP8 0	10	-0.5	-5.2%	16.9	12.5	12.0
TAP8 5	10	-0.3	-3.1%	16.5	12.1	11.8
TAP8 10	10	-0.2	-2.2%	16.2	11.9	11.7
TAP8 15	10	-0.2	-1.5%	16.1	11.8	11.7
TAP8 20	10	-0.1	-1.1%	16.0	11.7	11.6
TAP8 125	10	0.1	1.1%	15.7	11.5	11.6
TAP8 150	10	0.1	1.2%	15.7	11.5	11.6
TAP8 175	10	0.1	1.3%	15.8	11.5	11.7
TAP8 200	10	0.1	1.4%	15.8	11.6	11.7

	Critical	Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	Luau	Change	Critical Load	Year	- DN	DS
TAP9_15	10	0.1	1.3%	25.3	19.1	19.2
TAP9_20	10	0.1	1.4%	24.3	18.3	18.4
TAP9_25	10	0.1	1.5%	22.8	17.1	17.2
TAP9_30	10	0.2	1.5%	21.7	16.1	16.3
TAP9_40	10	0.2	1.5%	20.8	15.4	15.6
TAP9_50	10	0.1	1.5%	19.3	14.2	14.3
TAP9_75	10	0.1	1.4%	18.4	13.5	13.6
TAP9_100	10	0.1	1.4%	17.7	13.0	13.1
TAP9_125	10	0.1	1.4%	17.2	12.6	12.7
TAP9_150	10	0.1	1.3%	16.9	12.3	12.5
TAP9_175	10	0.1	1.3%	16.6	12.1	12.3
TAP9_200	10	0.1	1.3%	16.4	12.0	12.1
TBH10_0	10	1.1	10.9%	37.1	29.8	30.9
TBH10_5	10	0.8	8.5%	32.8	26.0	26.8
TBH10_10	10	0.7	7.4%	30.3	23.7	24.4
TBH10_15	10	0.7	6.8%	28.5	22.1	22.8
TBH10_20	10	0.6	6.4%	27.2	21.0	21.6
TBH10_25	10	0.6	5.9%	25.3	19.3	19.9
TBH10_30	10	0.6	5.6%	24.0	18.2	18.8
TBH10_40	10	0.5	5.4%	23.0	17.4	17.9
TBH10 50	10	0.5	5.0%	21.4	16.1	16.6
TBH10_75	10	0.5	4.8%	20.5	15.3	15.8
TBH10 100	10	0.5	4.6%	19.8	14.8	15.2
TBH10 125	10	0.4	4.4%	19.3	14.4	14.8
TBH10_150	10	0.4	4.2%	18.9	14.1	14.5
TBH10_175	10	0.4	4.1%	18.6	13.8	14.2
TBH10 200	10	0.4	4.0%	18.3	13.6	14.0
TBH11_0	10	0.3	2.7%	33.0	25.7	26.0
TBH11_5	10	0.3	3.1%	30.4	23.4	23.7
TBH11_10	10	0.3	3.3%	28.6	22.0	22.3
TBH11_15	10	0.3	3.4%	27.4	21.0	21.4
TBH11_20	10	0.3	3.4%	26.4	20.3	20.6
TBH11 25	10	0.3	3.5%	25.1	19.2	19.6
TBH11 30	10	0.3	3.5%	24.1	18.4	18.8
TBH11 40	10	0.4	3.5%	23.4	17.8	18.1
TBH11_50	10	0.3	3.5%	22.0	16.7	17.0
TBH11 75	10	0.3	3.4%	21.1	15.9	16.3
TBH11_100	10	0.3	3.4%	20.5	15.4	15.7
TBH11 125	10	0.3	3.3%	19.9	14.9	15.3
TBH11 150	10	0.3	3.3%	19.5	14.6	14.9
TBH11 175	10	0.3	3.2%	19.1	14.3	14.6
TBH11 200	10	0.3	3.1%	18.8	14.0	14.3
TBH12 0	10	0.2	2.0%	28.8	22.8	23.0
TBH12 5	10	0.2	2.2%	26.1	20.4	20.6
TBH12 10	10	0.2	2.3%	24.4	18.9	19.1
TBH12 15	10	0.2	2.4%	23.2	17.9	18.1
TBH12 20	10	0.2	2.4%	22.3	17.1	17.3
TBH12 25	10	0.3	2.5%	21.1	16.0	16.2
TBH12 30	10	0.3	2.5%	20.2	15.2	15.5
TBH12 40	10	0.3	2.6%	19.6	14.7	14.9
TBH12 50	10	0.3	2.6%	18.6	13.8	14.1
TBH12_75	10	0.3	2.6%	18.0	13.3	13.6

	Critical	Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year	
	Luau	Change	Critical Load	Year	- DN	DS	
TBH12_100	10	0.3	2.6%	17.5	13.0	13.2	
TBH12_125	10	0.3	2.6%	17.2	12.7	13.0	
TBH12_150	10	0.3	2.6%	17.0	12.6	12.8	
TBH12_175	10	0.3	2.6%	16.8	12.4	12.7	
TBH12_200	10	0.3	2.6%	16.7	12.3	12.6	
TBH13_0	10	0.4	4.2%	18.4	13.5	13.9	
TBH13_0	10	0.5	4.9%	33.7	26.4	26.9	
TBH13_5	10	0.4	4.1%	18.3	13.5	13.9	
TBH13 5	10	0.4	4.3%	30.9	23.9	24.4	
TBH13_10	10	0.4	4.0%	18.3	13.4	13.8	
TBH13 10	10	0.4	3.8%	29.0	22.2	22.6	
TBH13 15	10	0.4	3.9%	18.2	13.4	13.8	
TBH13 15	10	0.3	3.4%	27.5	20.9	21.3	
TBH13 20	10	0.4	3.8%	16.2	11.9	12.3	
TBH13_20	10	0.3	3.1%	26.3	19.9	20.2	
TBH13 25	10	0.4	3.7%	16.1	11.9	12.2	
TBH13 25	10	0.3	2.6%	24.5	18.4	18.6	
TBH13 30	10	0.4	3.6%	16.1	11.8	12.2	
TBH13 30	10	0.2	2.3%	23.2	17.3	17.5	
TBH13 40	10	0.3	3.5%	16.0	11.8	12.1	
TBH13_40	10	0.2	2.0%	22.2	16.5	16.7	
TBH13_50	10	0.3	3.3%	15.9	11.7	12.0	
TBH13_50	10	0.2	1.5%	20.5	15.1	15.2	
TBH13_75	10	0.3	3.2%	15.9	11.7	12.0	
TBH13 75	10	0.0	1.2%	19.4	14.2	14.3	
TBH13_100	10	0.3	3.1%	15.8	11.6	11.9	
TBH13 125	10	0.3	3.0%	15.8	11.6	11.9	
TBH13 150	10	0.3	2.9%	15.8	11.6	11.9	
TBH13 175	10	0.3	2.9%	15.8	11.6	11.8	
TBH13 200	10	0.3	2.9%	15.7	11.5	11.8	
TBH14_0	10	1 1	10.5%	17.8	13.1	14.1	
TBH14_5	10	0.9	8.6%	17.4	12.8	13.7	
TBH14_10	10	0.7	7.4%	17.2	12.0	13.4	
TBH14_15	10	0.7	6.6%	17.1	12.6	13.2	
TBH14_10	10	0.6	6.0%	17.0	12.5	13.1	
TBH14_25	10	0.5	5.2%	16.9	12.0	12.9	
TBH14_20	10	0.5	4.7%	16.8	12.4	12.0	
TBH14_00	10	0.0	4.3%	16.8	12.3	12.0	
TBH14_50	10	0.4	3.7%	16.7	12.0	12.6	
TBH14_50	10	0.7	3.1%	16.7	12.0	12.0	
TBH14_100	10	0.0	3.7%	16.8	12.3	12.0	
TBH1/ 125	10	0.3	3.1%	16.8	12.0	12.0	
TBH14_120	10	0.3	3.1%	16.0	12.5	12.0	
TBH14_130	10	0.3	3.1%	17.0	12.4	12.7	
TBH1/ 200	10	0.0	3 1%	17.0	12.7	12.7	
TBH15_0	10	1.5	1/ 7%	23.4	17.7	10.2	
TBH15_5	10	1.3	17.7 /0	20.4	16.7	19.2	
TBH15_10	10	1.5	14.0/0	24.2	16.7	17.0	
TBH15_10	10	1.1	10.0%	21.3	16.0	16.5	
TBU15_10	10	1.0	0.40/	20.7	15.5	10.0	
TBU15 20	10	0.9	J. 1 %	20.2 10 F	13.1	10.0	
TRU15 20	10	0.0	1.0% C 00/	19.0	14.0	13.2	
10013_30	IU	0.7	0.9%	10.9	14.0	14./	

	Critical	Road	Contribution	Total Concentration		
Receptor	Load	Absolute	Change as % of	Base	Future Year	Future year
	LUau	Change	Critical Load	Year	- DN	DS
TBH15_40	10	0.6	6.2%	18.5	13.7	14.3
TBH15_50	10	0.5	5.0%	17.8	13.1	13.6
TBH15_75	10	0.4	4.2%	17.3	12.7	13.1
TBH15_100	10	0.4	3.6%	16.9	12.5	12.8
TBH15 125	10	0.3	3.2%	16.7	12.3	12.6
TBH15 150	10	0.3	2.8%	16.5	12.1	12.4
TBH15 175	10	0.3	2.6%	16.4	12.0	12.3
TBH15 200	10	0.2	2.4%	16.3	11.9	12.2
TBH16 0	10	3.1	31.0%	23.0	17.3	20.4
TBH16 5	10	2.3	22.7%	21.4	16.0	18.3
TBH16 10	10	1.9	19.4%	20.6	15.4	17.3
TBH16_15	10	1.7	16.8%	20.1	14.9	16.6
TBH16_20	10	1.5	14.6%	19.8	14.7	16.1
TBH16_25	10	12	12.0%	19.2	14.2	15.4
TBH16_30	10	1.2	10.5%	18.8	13.9	15.0
TBH16_00	10	0.9	9.2%	18.6	13.7	14.6
TBH16_50	10	0.3	7.2%	18.0	13.3	14.0
TBH16 75	10	0.7	6.0%	17.8	13.0	13.7
TBH16 100	10	0.0	5.3%	17.0	12.0	13.7
TDI110_100	10	0.5	5.5 /o A 70/	17.0	12.9	12.0
TDH10_123	10	0.5	4.7%	17.4	12.0	13.3
TPU16 175	10	0.4	4.3%	17.3	12.7	13.1
TBH10_175	10	0.4	4.0%	17.1	12.6	13.0
TBH16_200	10	0.4	3.7%	17.0	12.5	12.9
<u>TBH17_0</u>	10	1.3	12.9%	21.0	15.8	17.1
TBH17_5	10	1.2	12.1%	20.6	15.5	16.7
TBH17_10	10	1.2	11.5%	20.3	15.2	16.4
<u>IBH17_15</u>	10	1.1	11.0%	20.0	15.0	16.1
<u>IBH17_20</u>	10	1.1	10.6%	19.8	14.8	15.9
TBH17_25	10	1.0	9.9%	19.4	14.5	15.5
TBH17_30	10	0.9	9.4%	19.1	14.2	15.1
<u>IBH17_40</u>	10	0.9	8.9%	18.9	14.0	14.9
TBH17_50	10	0.8	8.0%	18.4	13.6	14.4
TBH17_75	10	0.7	7.4%	18.0	13.3	14.1
TBH17_100	10	0.7	7.0%	17.8	13.1	13.8
TBH17_125	10	0.7	6.6%	17.6	13.0	13.7
TBH17_150	10	0.6	6.4%	17.5	12.9	13.5
TBH17_175	10	0.6	6.1%	17.3	12.8	13.4
TBH17_200	10	0.6	5.9%	17.2	12.7	13.3
TBH18_0	10	1.9	19.0%	29.4	23.0	24.9
TBH18_5	10	1.5	14.9%	26.3	20.3	21.8
TBH18_10	10	1.3	12.5%	24.4	18.6	19.9
TBH18_15	10	1.1	10.9%	23.1	17.5	18.6
TBH18_20	10	1.0	9.7%	22.1	16.7	17.6
TBH18_25	10	0.8	8.1%	20.7	15.5	16.3
TBH18 30	10	0.7	7.0%	19.8	14.7	15.4
TBH18 40	10	0.6	6.2%	19.1	14.1	14.7
TBH18 50	10	0.5	5.0%	17.9	13.2	13.7
TBH18 75	10	0.4	4.3%	17.2	12.7	13.1
TBH18 100	10	0.4	3.8%	16.8	12.3	12.7
TBH18 125	10	0.3	3.5%	16.4	12.1	12.4
TBH18 150	10	0.3	3.2%	16.2	11.9	12.2
TBH18 175	10	0.3	3.0%	16.0	11.7	12.0

	Critical	Road	Contribution	Total Concentration			
Receptor		Absolute	Change as % of	Base	Future Year	Future year	
	Load	Change	Critical Load	Year	- DN	DS	
TBH18_200	10	0.3	2.9%	15.8	11.6	11.9	
TBH19_0	10	2.5	24.7%	21.6	16.2	18.7	
TBH19_5	10	1.4	14.2%	18.5	13.7	15.2	
TBH19_10	10	1.1	10.5%	17.5	12.9	13.9	
TBH19_15	10	0.8	8.5%	16.9	12.4	13.3	
TBH19_20	10	0.7	7.2%	16.5	12.1	12.8	
TBH19_25	10	0.6	5.6%	16.0	11.7	12.3	
TBH19_30	10	0.5	4.6%	15.7	11.5	12.0	
TBH19_40	10	0.4	4.0%	15.5	11.4	11.8	
TBH19_50	10	0.3	3.0%	15.2	11.1	11.4	
TBH19_75	10	0.2	2.5%	15.1	11.0	11.3	
TBH19_100	10	0.2	2.2%	15.0	10.9	11.2	
TBH19_125	10	0.2	1.9%	14.9	10.9	11.1	
TBH19_150	10	0.2	1.7%	14.8	10.8	11.0	
TBH19_175	10	0.2	1.6%	14.8	10.8	11.0	
TBH19_200	10	0.2	1.5%	14.8	10.8	10.9	
TBH20_0	10	0.7	6.5%	16.2	11.9	12.6	
TBH20_5	10	1.6	15.9%	19.0	14.1	15.7	
TBH20_10	10	1.3	12.9%	18.1	13.4	14.7	
TBH20_15	10	1.1	11.0%	17.6	13.0	14.1	
TBH20_20	10	1.0	9.6%	17.1	12.7	13.6	
TBH20_25	10	0.8	7.7%	16.6	12.2	13.0	
TBH20_30	10	0.7	6.5%	16.2	11.9	12.6	
TBH20_40	10	0.6	5.7%	16.0	11.8	12.3	
TBH20_50	10	0.4	4.3%	15.6	11.4	11.9	
TBH20_75	10	0.4	3.6%	15.4	11.3	11.6	
TBH20_100	10	0.3	3.1%	15.2	11.1	11.4	
TBH20_125	10	0.3	2.7%	15.1	11.1	11.3	
TBH20_150	10	0.2	2.4%	15.0	11.0	11.2	
TBH20_175	10	0.2	2.2%	15.0	10.9	11.2	
TBH20_200	10	0.2	2.1%	14.9	10.9	11.1	
TBH21_0	10	1.0	10.4%	18.4	13.7	14.7	
TBH21_5	10	0.9	9.5%	18.2	13.5	14.4	
TBH21_10	10	0.9	8.8%	18.0	13.3	14.2	
TBH21_15	10	0.8	8.2%	17.8	13.1	14.0	
TBH21_20	10	0.8	7.6%	17.6	13.0	13.8	
TBH21_25	10	0.7	6.8%	17.4	12.8	13.5	
TBH21_30	10	0.6	6.1%	17.2	12.7	13.3	
TBH21_40	10	0.6	5.6%	17.0	12.5	13.1	
TBH21_50	10	0.5	4.6%	16.8	12.3	12.8	
TBH21_75	10	0.4	3.9%	16.6	12.2	12.6	
TBH21_100	10	0.3	3.5%	16.4	12.0	12.4	
TBH21_125	10	0.3	3.1%	16.3	12.0	12.3	
TBH21_150	10	0.3	2.8%	16.2	11.9	12.2	
TBH21_175	10	0.3	2.5%	16.1	11.8	12.1	
TBH21 200	10	0.2	2.3%	16.1	11.8	12.0	
TBH22_0	10	1.6	15.6%	23.7	17.7	19.2	
TBH22 5	10	1.1	11.3%	21.8	16.2	17.3	
TBH22 10	10	0.9	9.3%	21.0	15.5	16.4	
TBH22 15	10	0.8	8.1%	20.4	15.1	15.9	
TBH22 20	10	0.7	7.2%	20.1	14.8	15.5	
TBH22_25	10	0.6	5.9%	19.5	14.3	14.9	

	Critical	Road	Contribution	Total Concentration			
Receptor	Load	Absolute	Change as % of	Base	Future Year	Future year	
	Luau	Change	Critical Load	Year	- DN	DS	
TBH22_30	10	0.5	5.1%	19.1	14.1	14.6	
TBH22_40	10	0.4	4.5%	18.9	13.8	14.3	
TBH22_50	10	0.4	3.6%	18.5	13.5	13.9	
TBH22_75	10	0.3	3.0%	18.2	13.3	13.6	
TBH22_100	10	0.3	2.6%	18.0	13.2	13.5	
TBH22 125	10	0.2	2.3%	17.9	13.1	13.3	
TBH22_150	10	0.2	2.1%	17.8	13.0	13.3	
TBH22_175	10	0.2	2.0%	17.7	13.0	13.2	
TBH22 200	10	0.2	1.8%	17.7	12.9	13.1	
TBH23_0	10	1.1	10.6%	21.5	16.0	17.0	
TBH23 5	10	0.7	7.1%	20.0	14.8	15.5	
TBH23 10	10	0.6	5.7%	19.4	14.3	14.8	
TBH23 15	10	0.5	4.8%	19.0	14.0	14.4	
TBH23 20	10	0.4	4.2%	18.7	13.7	14.2	
TBH23 25	10	0.3	3.4%	18.4	13.5	13.8	
TBH23 30	10	0.3	2.9%	18.1	13.3	13.6	
TBH23 40	10	0.2	2.5%	18.0	13.2	13.4	
TBH23 50	10	0.2	2.0%	17.7	13.0	13.2	
TBH23 75	10	0.2	1.7%	17.6	12.9	13.0	
TBH23 100	10	0.1	1.5%	17.5	12.8	13.0	
TBH23 125	10	0.1	1.3%	17.5	12.8	12.9	
TBH23 150	10	0.1	1.2%	17.4	12.7	12.8	
TBH23 175	10	0.1	1.1%	17.4	12.7	12.8	
TBH23_200	10	0.1	1.1%	17.3	12.7	12.8	
TBH24_0	10	14	13.5%	27.2	20.6	21.9	
TBH24_5	10	0.9	9.1%	23.2	17.2	18.1	
TBH24_10	10	0.7	7.3%	21.5	15.8	16.6	
TBH24_15	10	0.6	6.3%	20.4	15.0	15.7	
TBH24_20	10	0.6	5.5%	19.7	14.5	15.1	
TBH24_25	10	0.5	4.6%	18.8	13.8	14.3	
TBH24_30	10	0.0	4.0%	18.2	13.4	13.8	
TBH24_40	10	0.1	3.6%	17.8	13.1	13.4	
TBH24_50	10	0.3	3.0%	17.2	12.6	12.9	
TBH24_00	10	0.3	2.6%	16.8	12.3	12.6	
TBH24_100	10	0.0	2.3%	16.6	12.0	12.0	
TBH24_100	10	0.2	2.0%	16.0	12.1	12.4	
TBH24_120	10	0.2	2.0%	16.3	11.0	12.2	
TBH24_100	10	0.2	1.0%	16.0	11.3	12.1	
TBH24_110	10	0.2	1.8%	16.1	11.8	11.0	
TBH3 0	10	0.2	7.0%	22.3	17.0	17.7	
TBH3 5	10	0.7	1.0%	19.5	14.6	15.1	
TBH3 10	10	0.0	3.8%	18.0	13.7	14.1	
	10	0.4	3.0%	17.4	12.2	12.5	
TBH3 20	10	0.3	3.3 /6 2 Q%	17.0	12.2	13.0	
TBH3 25	10	0.3	2.3 /0	16.9	12.0	12.7	
TBH3 20	10	0.3	2.5 /0	10.0	12.4	12.7	
TBH3 40	10	0.2	2.2/0	16.3	12.2	12.4	
	10	0.2	4 Q0/	10.3	14.0	14.4	
TBU2 75	10	0.2	1.0%	15.5	11./	11.3	
TBU2 100	10	0.2	1.0%	15./	11.0	11./	
TBU2 125	10	0.1	1.0%	15.0	11.0	11.0	
TRU2 150	10	0.1	1.4%	15.5	11.4	11.0 44 E	
1003_100	10	U. I	1.3%	15.4	11.5	11.5	

	Critical	Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	Loau	Change	Critical Load	Year	- DN	DS
TBH3_175	10	0.1	1.3%	15.4	11.3	11.4
TBH3_200	10	0.1	1.2%	15.4	11.3	11.4
TBH4_0	10	2.3	23.2%	23.7	18.2	20.5
TBH4_5	10	1.7	16.5%	21.2	16.0	17.7
TBH4_10	10	1.3	13.2%	19.9	15.0	16.3
TBH4 15	10	1.1	11.1%	19.1	14.3	15.4
TBH4_20	10	1.0	9.7%	18.6	13.9	14.8
TBH4_25	10	0.8	7.9%	17.9	13.3	14.1
TBH4 30	10	0.7	6.7%	17.4	12.9	13.6
TBH4_40	10	0.6	5.9%	17.1	12.7	13.3
TBH4 50	10	0.5	4.7%	16.7	12.3	12.7
TBH4 75	10	0.4	4.0%	16.4	12.1	12.5
TBH4 100	10	0.4	3.5%	16.2	11.9	12.3
TBH4 125	10	0.3	3.2%	16.1	11.8	12.1
TBH4 150	10	0.3	3.0%	16.0	11.8	12.1
TBH4 175	10	0.3	2.8%	15.9	11.7	12.0
TBH4 200	10	0.3	2.6%	15.9	11.7	11.9
TBH5 0	10	0.3	2.6%	29.2	22.8	23.1
TBH5 5	10	0.2	2.1%	26.7	20.7	20.9
TBH5 10	10	0.2	1.9%	25.2	19.3	19.5
TBH5_15	10	0.2	1.8%	24.1	18.4	18.6
TBH5_20	10	0.2	1.8%	23.3	17.7	17.9
TBH5_25	10	0.2	1.9%	22.1	16.7	16.9
TBH5_30	10	0.2	2.1%	21.3	16.0	16.2
TBH5 40	10	0.2	2.2%	20.6	15.4	15.6
TBH5_50	10	0.3	2.6%	19.5	14.5	14.8
TBH5_75	10	0.3	2.7%	18.8	14.0	14.2
TBH5_100	10	0.3	2.8%	18.3	13.6	13.9
TBH5 125	10	0.3	2.8%	18.0	13.3	13.6
TBH5 150	10	0.3	2.8%	17.7	13.1	13.4
TBH5 175	10	0.3	2.8%	17.5	12.9	13.2
TBH5 200	10	0.3	2.8%	17.3	12.8	13.1
TBH6_0	10	1 4	14 2%	23.8	17.7	19.1
TBH6_5	10	1.1	12.3%	22.8	16.9	18.1
TBH6_10	10	1.2	10.9%	21.9	16.0	17.3
TBH6_15	10	1.0	9.8%	21.3	15.2	16.7
TBH6_10	10	0.9	9.0%	20.7	15.3	16.2
TBH6_25	10	0.0	7.7%	19.9	14.6	15.4
TBH6_30	10	0.7	6.8%	19.3	14.1	14.8
TBH6_40	10	0.6	6.1%	18.8	13.8	14.4
TBH6 50	10	0.5	4.9%	18.0	13.1	13.6
TBH6_00	10	0.0	4.0%	17.4	12.7	13.2
TBH6 100	10	0.4	3.7%	17.4	12.7	12.8
TBH6 125	10	0.4	3.7%	16.7	12.3	12.0
TBH6 150	10	0.0	3.0%	16.5	12.2	12.0
TBH6 175	10	0.0	2 8%	16.2	11 0	12.7
TBH6 200	10	0.3	2.0 /0	16.2	11.9	12.2
TBH7 0	10	1 2	13 0%	24.2	18.0	10 ?
TBH7 5	10	1.0	10.0%	27.4	16.5	17.6
TBH7 10	10	0.0	Q Q%	24.4	15.5	16.5
TBH7 15	10	0.9	7 7%	20.5	15.0	15.0
TBH7 20	10	0.0	6 Q%	10.0	1/ 5	15.0
20	10	0.1	0.070	19.0	17.5	10.4

	Critical Road Contribution			Total Concentration		
Receptor		Absolute	Change as % of	Base	Future Year	Future year
	LUau	Change	Critical Load	Year	- DN	DS
TBH7_25	10	0.6	5.7%	18.9	13.8	14.4
TBH7_30	10	0.5	4.9%	18.3	13.4	13.8
TBH7_40	10	0.4	4.4%	17.9	13.0	13.5
TBH7_50	10	0.4	3.5%	17.1	12.5	12.8
TBH7_75	10	0.3	3.0%	16.7	12.1	12.5
TBH7_100	10	0.3	2.7%	16.4	11.9	12.2
TBH7_125	10	0.2	2.4%	16.1	11.8	12.0
TBH7_150	10	0.2	2.3%	16.0	11.7	11.9
TBH7 175	10	0.2	2.1%	15.8	11.6	11.8
TBH7 200	10	0.2	2.0%	15.7	11.5	11.7
TBH8 0	10	1.7	16.6%	20.6	15.5	17.2
TBH8 5	10	1.1	10.5%	18.6	13.8	14.8
TBH8 10	10	0.8	8.3%	17.8	13.2	14.0
TBH8 15	10	0.7	7.1%	17.4	12.8	13.6
TBH8_20	10	0.6	6.3%	17.1	12.6	13.3
TBH8_25	10	0.5	5.3%	16.8	12.4	12.9
TBH8_30	10	0.5	4.6%	16.6	12.2	12.0
TBH8_40	10	0.0	4.0%	16.0	12.2	12.5
TBH8 50	10	0.4	3.7%	16.3	11.0	12.3
TBH8 75	10	0.4	3.3%	16.0	11.0	12.0
TBH9 100	10	0.3	2.3%	16.2	11.3	12.2
TBH8 125	10	0.3	3.2 /0	16.1	11.0	12.1
TDH0_123	10	0.3	3.1%	10.1	11.0	12.1
	10	0.3	3.0%	10.1	11.0	12.1
TBH8_1/5	10	0.3	2.9%	16.1	11.8	12.1
	10	0.3	2.9%	10.1	11.0	12.1
	10	0.9	9.1%	22.5	10.9	17.8
	10	1.3	12.7%	25.0	18.8	20.1
<u>1BH9_5</u>	10	1.0	10.2%	23.5	17.6	18.6
TBH9_10	10	0.9	9.1%	22.6	16.9	17.8
<u>IBH9_15</u>	10	0.8	8.4%	22.0	16.5	17.3
TBH9_20	10	0.8	8.0%	21.6	16.2	17.0
TBH9_25	10	0.7	7.4%	21.2	15.8	16.5
<u>IBH9_30</u>	10	0.7	7.1%	20.9	15.6	16.3
TBH9_40	10	0.7	7.0%	20.8	15.6	16.3
TBH9_50	10	0.7	6.9%	21.0	15.7	16.4
TBH9_75	10	0.7	7.1%	21.5	16.2	16.9
TBH9_100	10	0.8	7.7%	22.5	17.0	17.8
TBH9_125	10	0.9	8.9%	24.4	18.6	19.5
TBH9_150	10	1.0	10.2%	26.4	20.4	21.4
TBH9_175	10	1.0	10.4%	26.8	20.7	21.7
TBH9_200	10	1.0	10.4%	26.9	20.7	21.8
WFG4_0	10	-2.7	-26.9%	28.8	21.0	18.3
WG1_0	10	-1.8	-17.6%	48.6	35.7	34.0
WG1_5	10	-1.5	-14.7%	44.6	32.6	31.1
WG1_10	10	-1.2	-12.4%	41.6	30.1	28.9
WG1_15	10	-1.1	-10.7%	39.1	28.3	27.2
WG1_20	10	-0.9	-9.4%	37.2	26.8	25.9
WG1 25	10	-0.7	-7.4%	34.4	24.8	24.0
WG1 30	10	-0.6	-6.1%	32.5	23.4	22.8
WG1 40	10	-0.5	-5.2%	31.1	22.4	21.9
WG1 50	10	-0.4	-3.7%	29.0	20.9	20.5
WG1 75	10	-0.3	-2.9%	27.8	20.1	19.8

	Critical Road Contribution			Total Concentration		
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year - DN	Future year DS
WG1 100	10	-0.2	-2.4%	27.0	19.6	19.3
WG1_125	10	-0.2	-2.1%	26.5	19.2	19.0
WG1_120	10	-0.2	-1.8%	26.2	19.0	18.8
WG1_175	10	-0.2	-1.7%	25.9	18.8	18.6
WG1_00	10	-0.1	-1.5%	25.7	18.6	18.5
WG2_0	10	-0.1	-12.9%	40.0	29.7	28.4
WG2_5	10	-0.9	-9.1%	35.5	26.1	25.2
WG2_10	10	-0.7	-7.2%	33.1	24.2	23.5
WG2_10	10	-0.6	-6.0%	31.5	23.0	22.0
WG2_20	10	-0.5	-5.2%	30.4	22.2	21.7
WG2_25	10	-0.4	-4.0%	29.0	21 1	20.7
WG2_30	10	-0.3	-3.3%	28.1	20.4	20.1
WG2 40	10	-0.3	-2.8%	27.4	19.9	19.7
WG2_50	10	-0.2	-2.0%	26.4	19.2	19.0
WG2_75	10	-0.2	-1.6%	25.8	18.8	18.6
WG2_10	10	-0.1	-1.3%	25.4	18.5	18.3
WG2_125	10	-0.1	-1.1%	25.1	18.3	18.2
WG3_0	10	_1 4	-14 1%	<u>41 4</u>	30.9	29.4
WG3_5	10	-1.0	-10.0%	36.5	26.9	25.9
WG3_10	10	-0.8	-7.9%	33.8	24.8	24.0
WG3_15	10	-0.7	-6.5%	32.1	23.5	27.8
WG3_20	10	-0.6	-5.6%	30.9	22.5	22.0
WG3_25	10	-0.4	-4.4%	29.3	21.0	20.9
WG3_30	10	-0.4	-3.6%	28.3	20.6	20.0
WG3_40	10	-0.3	-3.1%	27.6	20.0	19.8
WG3_50	10	-0.2	-2.3%	26.6	19.3	19.0
WG3_75	10	-0.2	-1.8%	26.0	18.9	18.7
WG3_100	10	-0.2	-1.5%	25.6	18.6	18.4
WG3 125	10	-0.1	-1.3%	25.3	18.4	18.3
WG3 150	10	-0.1	-1.2%	25.1	18.2	18.1
WG4 0	10	-9.1	-90.6%	39.6	29.2	20.2
WG4_5	10	-6.2	-61.6%	34.8	25.5	19.3
WG4_10	10	-4.8	-48.1%	32.5	23.7	18.9
WG4 15	10	-4.0	-39.8%	31.1	22.7	18.7
WG4 20	10	-3.4	-34.1%	30.1	21.9	18.5
WG4_25	10	-2.7	-26.8%	28.8	21.0	18.3
WG4 30	10	-2.2	-22.2%	28.0	20.4	18.1
WG4 40	10	-1.9	-19.0%	27.4	20.0	18.1
WG4 50	10	-1.4	-14.2%	26.6	19.3	17.9
WG4 75	10	-1.1	-11.3%	26.1	19.0	17.8
WG4 100	10	-1.0	-9.5%	25.8	18.7	17.8
WG4 125	10	-0.8	-8.3%	25.5	18.6	17.7
WG4 150	10	-0.7	-7.3%	25.3	18.4	17.7
WG4 175	10	-0.6	-6.5%	25.2	18.3	17.7
WG4 200	10	-0.6	-5.9%	25.1	18.2	17.7
WG5 0	10	-2.7	-27.4%	45.1	33.7	30.9
WG5 5	10	-2.3	-22.6%	41.0	30.4	28.1
WG5 10	10	-2.0	-20.1%	38.7	28.6	26.6
WG5 15	10	-1.8	-18.4%	37.3	27.5	25.6
WG5 20	10	-1.7	-17.3%	36.3	26.6	24.9
WG5 25	10	-1.6	-15.8%	34.8	25.5	23.9
WG5_30	10	-1.5	-14.7%	33.7	24.7	23.2

Receptor	Critical Load	Road Contribution		Total Concentration		
		Absolute Change	Change as % of Critical Load	Base Year	Future Year - DN	Future year DS
WG5_40	10	-1.4	-14.0%	32.9	24.1	22.7
WG5_50	10	-1.3	-12.7%	31.5	23.0	21.7
WG5_75	10	-1.2	-11.8%	30.5	22.3	21.1
WG5_100	10	-1.1	-11.3%	29.8	21.8	20.6
WG5_125	10	-1.1	-11.0%	29.2	21.3	20.2
WG5_150	10	-1.1	-11.0%	28.8	21.0	19.9
WG5_175	10	-1.1	-11.4%	28.5	20.7	19.6
WG5 200	10	-1.3	-12.5%	28.3	20.6	19.4

Table E-5 Scenario 7a: Predicted 'in isolation' Annual Nitrogen Deposition at Modelled Ecological Receptors (Change >1% of Critical Load)

		Road	Contribution	Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future vear
•	Load	Change	Critical Load	Year	DM	DS
TBH1 0	10	-2.7	-26.8%	40.9	33.7	31.0
TBH1 5	10	-2.2	-22.3%	36.3	29.7	27.4
TBH1 10	10	-2.0	-19.5%	33.5	27.1	25.2
TBH1_15	10	-1.7	-17.4%	31.4	25.3	23.6
TBH1 20	10	-1.6	-15.6%	29.8	23.9	22.4
TBH1_25	10	-1.3	-12.8%	27.5	21.9	20.6
TBH1_30	10	-1.1	-10.7%	25.9	20.5	19.4
TBH1_40	10	-0.9	-9.0%	24.7	19.4	18.5
TBH1_50	10	-0.6	-6.1%	22.6	17.7	17.1
TBH1_75	10	-0.4	-4.5%	21.3	16.6	16.1
TBH1_100	10	-0.3	-3.4%	20.5	15.8	15.5
TBH1_125	10	-0.3	-2.7%	19.8	15.2	15.0
TBH1_150	10	-0.2	-2.2%	19.3	14.8	14.6
TBH1_175	10	-0.2	-1.8%	18.9	14.4	14.3
TBH1_200	10	-0.2	-1.5%	18.6	14.1	14.0
TBH2_0	10	-1.4	-14.2%	31.1	25.0	23.5
TBH2_5	10	-1.2	-11.8%	28.7	22.9	21.7
TBH2_10	10	-1.0	-9.9%	27.0	21.4	20.4
TBH2_15	10	-0.8	-8.5%	25.7	20.3	19.5
TBH2_20	10	-0.7	-7.3%	24.7	19.4	18.7
TBH2_25	10	-0.6	-5.6%	23.2	18.2	17.6
TBH2_30	10	-0.4	-4.5%	22.2	17.3	16.9
TBH2_40	10	-0.4	-3.6%	21.4	16.6	16.3
TBH2_50	10	-0.2	-2.3%	20.1	15.5	15.3
TBH2_75	10	-0.2	-1.6%	19.3	14.8	14.7
TBH2_100	10	-0.1	-1.2%	18.7	14.3	14.2
TBH26_0	10	-0.3	-3.1%	26.0	21.3	21.0
TBH26_5	10	-0.4	-4.3%	25.0	20.3	19.9
TBH26_10	10	-0.5	-4.8%	24.2	19.5	19.0
TBH26_15	10	-0.5	-4.8%	23.5	18.8	18.4
TBH26_20	10	-0.5	-4.7%	22.9	18.3	17.8
TBH26_25	10	-0.4	-4.4%	22.0	17.4	17.0
TBH26_30	10	-0.4	-4.0%	21.3	16.7	16.3
TBH26_40	10	-0.4	-3.7%	20.7	16.2	15.8
TBH26_50	10	-0.3	-3.0%	19.7	15.2	14.9
TBH20_75	10	-0.2	-2.5%	19.0	14.6	14.4
TPU26 100	10	-0.2	-2.1%	10.5	14.2	14.0
TPU26 150	10	-0.2	-1.9%	10.2	13.9	13.7
TPU26 175	10	-0.2	-1.7%	17.9	13.0	13.5
TDH20_175	10	-0.1	-1.0%	17.6	13.5	12.3
TBH20_200	10	-0.1	-1.3%	24.0	10.5	19.2
	10	-0.7	-0.7 /0	24.9	19.5	17.0
TBH27 10	10	-0.0	-5.0%	23.0 22.7	10.4	17.3
TBH27 15	10	-0.5	-5.270	22.1	17.1	11.2
TBH27 20	10	-0.3	-4.170	22.0	16.7	16.7
TBH27 25	10	-0.4	-4.370	21.5	16.7	15.6
TBH27 30	10	-0.4 _0.2	-3.1 /0	20.0	15.0	15.0
TBH27 40	10	-0.3	-3.3%	10.6	15.0	1/ 0
TBH27 50	10	-0.3	-3.070	12.0	11.2	14.3
TBH27 75	10	-0.2	-2.470	18.5	14.3	14 1
12121_10	10	0.2	2.170	10.0	17.0	1-7.1

	Oritical	Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
-	Load	Change	Critical Load	Year	DM	DS
TBH27 100	10	-0.2	-1.8%	18.2	14.0	13.9
TBH27 125	10	-0.2	-1.7%	18.0	13.9	13.7
TBH27 150	10	-0.2	-1.5%	17.8	13.7	13.6
TBH27 175	10	-0.1	-1.4%	17.7	13.6	13.4
TBH27_200	10	-0.1	-1.3%	17.5	13.5	13.3
TBH28_0	10	-15	-15.3%	22.3	18.3	16.8
TBH28_5	10	-1.0	-11.2%	20.5	16.5	15.0
TBH28_10	10	-0.9	-9.0%	19.5	15.5	14.6
TBH28 15	10	0.8	-0.0%	18.0	14.9	14.0
TBH28 20	10	-0.0	-7.0%	19.5	14.3	14.1
TBH29 25	10	-0.7	-0.0%	17.0	14.4	12.2
TDI 120_23	10	-0.5	-5.5%	17.5	13.0	12.0
TDH20_30	10	-0.4	-4.3%	17.5	13.4	13.0
TBH28_40	10	-0.4	-3.9%	17.3	13.2	12.8
TBH28_50	10	-0.3	-3.1%	17.0	12.9	12.5
TBH28_75	10	-0.3	-2.7%	16.9	12.7	12.4
TBH28_100	10	-0.3	-2.5%	16.9	12.7	12.5
TBH28_125	10	-0.2	-2.5%	17.0	12.8	12.5
IBH28_150	10	-0.3	-2.7%	17.3	13.0	12.7
TBH28_175	10	-0.3	-3.1%	17.8	13.4	13.1
TBH28_200	10	-0.4	-4.0%	18.8	14.2	13.8
TBH29_0	10	-1.6	-15.8%	22.9	19.0	17.4
TBH29_5	10	-1.1	-11.3%	21.0	17.0	15.9
TBH29_10	10	-0.9	-8.9%	19.9	15.9	15.0
TBH29_15	10	-0.7	-7.3%	19.2	15.2	14.4
TBH29_20	10	-0.6	-6.3%	18.7	14.7	14.0
TBH29_25	10	-0.5	-4.8%	18.0	14.0	13.5
TBH29_30	10	-0.4	-3.8%	17.6	13.5	13.2
TBH29_40	10	-0.3	-3.2%	17.3	13.2	12.9
TBH29_50	10	-0.2	-2.2%	16.7	12.7	12.5
TBH29 75	10	-0.2	-1.6%	16.4	12.4	12.2
TBH29 100	10	-0.1	-1.2%	16.2	12.2	12.1
TBH3 0	10	-0.4	-3.7%	24.7	20.5	20.1
TBH3 5	10	-0.2	-2.0%	20.1	15.9	15.7
TBH3 10	10	-0.1	-1.5%	18.7	14.6	14.4
TBH3 15	10	-0.1	-1.2%	17.9	13.8	13.7
TBH3 20	10	-0.1	-1.1%	17.5	13.4	13.3
TBH30 5	10	-0.1	-1.1%	22.6	17.5	17.4
TBH31 0	10	-0.6	-5.7%	22.0	16.8	16.3
TBH31 5	10	-0.5	-5.0%	21.3	16.2	15.7
TBH31 10	10	-0.4	-4.4%	20.6	15.7	15.2
TBH31_15	10	-0.4	-4 0%	20.0	15.3	14.9
TBH31_20	10	-0.4	-3.6%	19.6	14.9	14.5
TBH31_25	10	-0.3	-3.1%	18.9	14.3	14.0
TBH31 30	10	-0.0	_0.176	18.3	13.9	13.6
TBH31 40	10	-0.2	_2.770	17.9	13.5	13.0
TBH31 50	10	-0.2	-2.570	17.0	12.9	12.2
TBH31 75	10	-0.2 _0.1	_1 /0%	16./	12.0	12.0
TBH31 100	10	-0.1	-1.4/0	15.4	12.3	14.1
	10	-0.1	-1.170 5.40/	20.0	11.3	11.0
	10	-0.5	-0.470	20.0	13./	13.1 44 E
10032_3	10	-0.5	-4.3%	19.9	15.0	14.5
TDU22_10	10	-0.4	-4.0%	19.3	14.5	14.1
1BH32_15	10	-0.4	-3.5%	18.8	14.2	13.8
IBH32_20	10	-0.3	-3.2%	18.5	13.9	13.6

	Critical	Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
_	LUau	Change	Critical Load	Year	DM	DS
TBH32 25	10	-0.3	-2.7%	17.9	13.5	13.2
TBH32 30	10	-0.2	-2.3%	17.5	13.2	12.9
TBH32 40	10	-0.2	-2.0%	17.2	12.9	12.7
TBH32 50	10	-0.2	-1.6%	16.7	12.5	12.4
TBH32 75	10	-0.1	-1.2%	16.2	12.2	12.0
TBH33_0	10	-0.5	-5.4%	19.8	15.0	14.4
TBH33_5	10	-0.3	-3.5%	18.8	14.2	13.8
TBH33_10	10	-0.3	-2.5%	18.2	13.7	13.5
TBH33 15	10	0.0	2.0%	17.8	13.4	13.0
TBH22 20	10	-0.2	-2.0%	17.0	12.2	13.2
TBH33 25	10	-0.2	-1.0%	17.0	12.2	12.0
TD1135_25	10	-0.1	-1.2 /0	24.6	12.5	12.7
	10	-1.0	-9.9%	24.0	10.9	17.5
	10	-0.7	-7.2%	22.1	10.0	10.1
TBH34_10	10	-0.6	-0.8%	20.9	15.8	15.2
TBH34_15	10	-0.5	-4.9%	20.1	15.1	14.7
TBH34_20	10	-0.4	-4.3%	19.5	14.7	14.2
TBH34_25	10	-0.3	-3.4%	18.7	14.0	13.7
IBH34_30	10	-0.3	-2.9%	18.1	13.6	13.3
TBH34_40	10	-0.2	-2.4%	17.7	13.3	13.0
TBH34_50	10	-0.2	-1.8%	17.1	12.8	12.6
TBH34_75	10	-0.1	-1.4%	16.7	12.4	12.3
TBH34_100	10	-0.1	-1.1%	16.4	12.2	12.1
TBH1_0	10	-2.7	-26.8%	40.9	33.7	31.0
TBH1_5	10	-2.2	-22.3%	36.3	29.7	27.4
TBH1_10	10	-2.0	-19.5%	33.5	27.1	25.2
TBH1_15	10	-1.7	-17.4%	31.4	25.3	23.6
TBH1_20	10	-1.6	-15.6%	29.8	23.9	22.4
TBH1_25	10	-1.3	-12.8%	27.5	21.9	20.6
TBH1_30	10	-1.1	-10.7%	25.9	20.5	19.4
TBH1_40	10	-0.9	-9.0%	24.7	19.4	18.5
TBH1_50	10	-0.6	-6.1%	22.6	17.7	17.1
TBH1 75	10	-0.4	-4.5%	21.3	16.6	16.1
TBH1 100	10	-0.3	-3.4%	20.5	15.8	15.5
TBH1 125	10	-0.3	-2.7%	19.8	15.2	15.0
TBH1 150	10	-0.2	-2.2%	19.3	14.8	14.6
TBH1 175	10	-0.2	-1.8%	18.9	14.4	14.3
TBH1 200	10	-0.2	-1.5%	18.6	14.1	14.0
TBH2 0	10	-1.4	-14 2%	31.1	25.0	23.5
TBH2 5	10	-12	-11.8%	28.7	22.9	21.7
TBH2 10	10	-1.0	-9.9%	27.0	21.4	20.4
TBH2_15	10	-0.8	-8.5%	25.7	20.3	19.5
TBH2_10	10	-0.7	_7 3%	20.7	19.4	18.7
TBH2_25	10	-0.6	-5.6%	23.2	18.2	17.6
TBH2 20	10	-0.0	-5.0%	23.2	17.2	16.0
TBU2 40	10	-0.4	-4.570	24.4	17.3	10.3
	10	-0.4	-0.070	21.4	10.0	10.3
	10	-0.2	-2.3%	20.1	13.3	13.3
	10	-0.2	-1.0%	19.3	14.0	14.7
	10	-0.1	-1.2%	10.7	14.3	14.2
	10	-0.3	-3.1%	26.0	21.3	21.0
1BH26_5	10	-0.4	-4.3%	25.0	20.3	19.9
IBH26_10	10	-0.5	-4.8%	24.2	19.5	19.0
IBH26_15	10	-0.5	-4.8%	23.5	18.8	18.4
TBH26_20	10	-0.5	-4.7%	22.9	18.3	17.8

	Critical	Road Contribution		Total Concentration		
Receptor	Critical	Absolute	Change as % of	Base	Future Year	Future year
	Luau	Change	Critical Load	Year	DM	DS
TBH26 25	10	-0.4	-4.4%	22.0	17.4	17.0
TBH26 30	10	-0.4	-4.0%	21.3	16.7	16.3
TBH26 40	10	-0.4	-3.7%	20.7	16.2	15.8
TBH26 50	10	-0.3	-3.0%	19.7	15.2	14.9
TBH26 75	10	-0.2	-2.5%	19.0	14.6	14.4
TBH26_100	10	-0.2	-2.1%	18.5	14.2	14.0
TBH26_125	10	-0.2	-1.9%	18.2	13.9	13.7
TBH26_150	10	-0.2	-1 7%	17.9	13.6	13.5
TBH26_175	10	-0.1	-1 5%	17.7	13.5	13.3
TBH26_200	10	-0.1	-1.3%	17.6	13.3	13.2
TBH27_0	10	-0.7	-6.7%	24.9	19.5	18.8
TBH27_5	10	-0.6	-5.8%	23.6	18.4	17.9
TBH27_0	10	-0.5	-5.2%	20.0	17.7	17.0
TBH27_15	10	-0.5	_1 7%	22.7	17.1	16.7
TBH27_20	10	-0.5	-4.770	21.0	16.7	16.7
TBH27_20	10	-0.4	-4.5%	21.5	16.0	15.6
TBH27 20	10	-0.4	-0.770	20.0	15.5	15.0
TBH27_30	10	-0.3	-0.0%	10.6	15.3	14.0
TDH27_40	10	-0.3	-3.0%	19.0	14.6	14.5
TDH27_30	10	-0.2	-2.4%	10.9	14.0	14.4
TDH27_73	10	-0.2	-2.1%	10.5	14.3	14.1
TDH27_100	10	-0.2	-1.0%	10.2	14.0	13.9
TBH27_123	10	-0.2	-1.7%	18.0	13.9	13.7
TBH27_150	10	-0.2	-1.5%	17.8	13.7	13.6
TBH27_175	10	-0.1	-1.4%	17.7	13.6	13.4
TBH27_200	10	-0.1	-1.3%	17.5	13.5	13.3
<u>1BH28_0</u>	10	-1.5	-15.3%	22.3	18.3	16.8
TBH28_5	10	-1.1	-11.2%	20.5	16.5	15.4
TBH28_10	10	-0.9	-9.0%	19.5	15.5	14.6
TBH28_15	10	-0.8	-7.6%	18.9	14.9	14.1
TBH28_20	10	-0.7	-0.0%	18.5	14.4	13.7
TBH28_25	10	-0.5	-5.3%	17.9	13.8	13.3
TBH28_30	10	-0.4	-4.5%	17.5	13.4	13.0
TBH28_40	10	-0.4	-3.9%	17.3	13.2	12.8
TBH28_50	10	-0.3	-3.1%	17.0	12.9	12.5
<u>1BH28_75</u>	10	-0.3	-2.7%	16.9	12.7	12.4
TBH28_100	10	-0.3	-2.5%	16.9	12.7	12.5
TBH28_125	10	-0.2	-2.5%	17.0	12.8	12.5
TBH28_150	10	-0.3	-2.7%	17.3	13.0	12.7
TBH28_175	10	-0.3	-3.1%	17.8	13.4	13.1
TBH28_200	10	-0.4	-4.0%	18.8	14.2	13.8
<u>TBH29_0</u>	10	-1.6	-15.8%	22.9	19.0	17.4
TBH29_5	10	-1.1	-11.3%	21.0	17.0	15.9
IBH29_10	10	-0.9	-8.9%	19.9	15.9	15.0
IBH29_15	10	-0.7	-7.3%	19.2	15.2	14.4
1BH29_20	10	-0.6	-6.3%	18.7	14.7	14.0
1BH29_25	10	-0.5	-4.8%	18.0	14.0	13.5
IBH29_30	10	-0.4	-3.8%	17.6	13.5	13.2
<u>1BH29_40</u>	10	-0.3	-3.2%	17.3	13.2	12.9
TBH29_50	10	-0.2	-2.2%	16.7	12.7	12.5
TBH29_75	10	-0.2	-1.6%	16.4	12.4	12.2
TBH29_100	10	-0.1	-1.2%	16.2	12.2	12.1
0	10	-0.4	-3.7%	24.7	20.5	20.1
TBH3_5	10	-0.2	-2.0%	20.1	15.9	15.7

		Road	Contribution	Total Concentration			
Receptor	Critical	Absolute	Change as % of	Base	Base Future Year Futur		
	Load	Change	Critical Load	Year	DM	DS	
TBH3 10	10	-0.1	-1.5%	18.7	14.6	14.4	
TBH3 15	10	-0.1	-1.2%	17.9	13.8	13.7	
TBH3 20	10	-0.1	-1.1%	17.5	13.4	13.3	
TBH30 5	10	-0.1	-1.1%	22.6	17.5	17.4	
TBH31 0	10	-0.6	-5.7%	22.0	16.8	16.3	
TBH31 5	10	-0.5	-5.0%	21.3	16.2	15.7	
TBH31 10	10	-0.4	-4.4%	20.6	15.7	15.2	
TBH31_15	10	-0.4	-4.0%	20.0	15.3	14.9	
TBH31 20	10	-0.4	-3.6%	19.6	14.9	14.5	
TBH31 25	10	-0.3	-3.1%	18.9	14.3	14.0	
TBH31_30	10	-0.3	-2.7%	18.3	13.8	13.6	
TBH31_40	10	-0.2	-2.3%	17.8	13.5	13.2	
TBH31_50	10	-0.2	-1.8%	17.0	12.8	12.6	
TBH31_75	10	-0.1	-1.4%	16.4	12.3	12.1	
TBH31_100	10	-0.1	-1.1%	15.9	11.9	11.8	
TBH32_0	10	-0.5	-5.4%	20.8	15.7	15.1	
TBH32_5	10	-0.5	-4.5%	19.9	15.0	14.5	
TBH32_10	10	-0.4	-4.0%	19.3	14.5	14.1	
TBH32_15	10	-0.4	-3.5%	18.8	14.2	13.8	
TBH32 20	10	-0.3	-3.2%	18.5	13.9	13.6	
TBH32_25	10	-0.3	-2.7%	17.9	13.5	13.2	
TBH32_30	10	-0.2	-2.3%	17.5	13.2	12.9	
TBH32_40	10	-0.2	-2.0%	17.2	12.9	12.7	
TBH32_50	10	-0.2	-1.6%	16.7	12.5	12.4	
TBH32_75	10	-0.1	-1.2%	16.2	12.2	12.0	
TBH33_0	10	-0.5	-5.4%	19.8	15.0	14.4	
TBH33_5	10	-0.3	-3.5%	18.8	14.2	13.8	
TBH33_10	10	-0.3	-2.5%	18.2	13.7	13.5	
TBH33_15	10	-0.2	-2.0%	17.8	13.4	13.2	
TBH33_20	10	-0.2	-1.6%	17.6	13.2	13.0	
TBH33_25	10	-0.1	-1.2%	17.2	12.9	12.7	
TBH34_0	10	-1.0	-9.9%	24.6	18.9	17.9	
TBH34_5	10	-0.7	-7.2%	22.1	16.8	16.1	
TBH34_10	10	-0.6	-5.8%	20.9	15.8	15.2	
TBH34_15	10	-0.5	-4.9%	20.1	15.1	14.7	
TBH34_20	10	-0.4	-4.3%	19.5	14.7	14.2	
TBH34_25	10	-0.3	-3.4%	18.7	14.0	13.7	
TBH34_30	10	-0.3	-2.9%	18.1	13.6	13.3	
TBH34_40	10	-0.2	-2.4%	17.7	13.3	13.0	
TBH34_50	10	-0.2	-1.8%	17.1	12.8	12.6	
TBH34_75	10	-0.1	-1.4%	16.7	12.4	12.3	
TBH34_100	10	-0.1	-1.1%	16.4	12.2	12.1	

Table E-6 Scenario 7a: Predicted 'in combination' Annual Nitrogen Deposition at Modelled Ecological Receptors (Change >1% of Critical Load)

	Critical	Road	Contribution		Total Concentr	ation
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year DM	Future year DS
TBH1 0	10	-1.9	-18.9%	40.9	32.9	31.0
TBH1 5	10	-1.5	-14.7%	36.3	28.9	27.4
TBH1 10	10	-1.2	-12.2%	33.5	26.4	25.2
TBH1 15	10	-1.0	-10.2%	31.4	24.6	23.6
TBH1 20	10	-0.9	-8.7%	29.8	23.3	22.4
TBH1 25	10	-0.6	-6.3%	27.5	21.3	20.6
TBH1 30	10	-0.5	-4.5%	25.9	19.9	19.4
TBH1 40	10	-0.3	-3.1%	24.7	18.9	18.5
TBH1 100	10	0.1	1.1%	20.5	15.3	15.5
TBH1 125	10	0.2	1.6%	19.8	14.8	15.0
TBH1_150	10	0.2	1.9%	19.3	14.4	14.6
TBH1_175	10	0.2	2.1%	18.9	14.1	14.3
TBH1_200	10	0.2	2.2%	18.6	13.8	14.0
TBH13_0	10	0.6	6.1%	32.9	25.7	26.3
TBH13_10	10	0.5	4.6%	28.5	21.8	22.2
TBH13_15	10	0.4	4.2%	27.0	20.5	20.9
TBH13_20	10	0.4	3.8%	25.9	19.5	19.9
TBH13_25	10	0.3	3.2%	24.1	18.1	18.4
TBH13_30	10	0.3	2.7%	22.9	17.0	17.3
TBH13_40	10	0.2	2.4%	21.9	16.2	16.5
TBH13_50	10	0.2	1.7%	20.3	14.9	15.1
TBH13_75	10	0.1	1.3%	19.2	14.1	14.2
TBH2_0	10	-0.7	-6.8%	31.1	24.2	23.5
TBH2_5	10	-0.5	-4.7%	28.7	22.2	21.7
TBH2_10	10	-0.3	-3.0%	27.0	20.7	20.4
TBH2_15	10	-0.2	-1.8%	25.7	19.6	19.5
TBH2_30	10	0.1	1.5%	22.2	16.7	16.9
TBH2_40	10	0.2	2.1%	21.4	16.1	16.3
TBH2_50	10	0.3	3.1%	20.1	15.0	15.3
TBH2_75	10	0.4	3.6%	19.3	14.3	14.7
TBH2_100	10	0.4	3.9%	18.7	13.8	14.2
TBH2_125	10	0.4	4.0%	18.3	13.5	13.9
TBH2_150	10	0.4	4.0%	17.9	13.3	13.7
TBH2_175	10	0.4	4.0%	17.7	13.1	13.5
<u>TBH2_200</u>	10	0.4	4.0%	17.5	12.9	13.3
<u>1BH25_0</u>	10	0.6	6.4%	22.7	16.9	17.6
1BH25_5	10	0.6	6.1%	21.6	16.1	16.7
1BH25_10	10	0.6	5.8%	20.8	15.5	16.0
<u>1BH25_15</u>	10	0.6	5.5%	20.3	15.0	15.6
TBH25_20	10	0.5	5.3%	19.8	14.6	15.2
TBH25_25	10	0.5	4.9%	19.1	14.1	14.6
TBH25_30	10	0.5	4.6%	18.6	13.7	14.2
TDU25_50	10	0.4	4.4%	18.2	13.4	13.8
1BH25_50	10	0.4	3.9%	1/.5	12.9	13.3
IBH25_/5	10	0.4	3.0% 3.40/	1/.1	12.6	12.9
TPLI25_100	10	0.3	3.4 %	10.0	12.4	12.7
TPH25_125	10	0.3	3.2%	10.0	12.2	12.5
TPH25_150	10	0.3	3.1%	10.5	12.1	12.4
TPU25_000	10	0.3	3.U%	10.4	12.0	12.3
	10	0.3	2.3 %	10.3	11.9	12.2
I DHZ0_0	10	1.3	13.1%	∠b.U	19.7	21.0

	Oritical	Road	Contribution	Total Concentration			
Receptor	Load	Absolute	Change as % of	Base Year	Future Year	Future year	
	10		10.3%	25.0	18.8	19.9	
TBH26_10	10	0.0	8.7%	23.0	18.2	19.9	
TBH26_15	10	0.9	7.6%	27.2	17.6	18.0	
TBH26_20	10	0.0	6.9%	23.5	17.0	17.8	
TBH26_25	10	0.7	5.9%	22.9	16.4	17.0	
TBH26_30	10	0.0	5.3%	22.0	15.4	16.3	
TBH26_00	10	0.5	J.Z /0	21.5	15.0	15.8	
TBH26_50	10	0.5	4.7%	19.7	14.5	14.9	
TBH26_55	10	0.4	3.6%	19.0	14.0	14.5	
TBH26_100	10	0.4	3.0%	18.5	13.6	14.4	
TBH26_125	10	0.3	3.1%	18.2	13.0	13.7	
TBH26_120	10	0.3	3.0%	17.9	13.2	13.5	
TBH26_175	10	0.3	2.9%	17.5	13.0	13.3	
TBH26_200	10	0.3	2.8%	17.6	12.9	13.2	
TBH27_10	10	0.0	1.0%	22.7	17.1	17.2	
TBH27_15	10	0.1	1.2%	22.0	16.5	16.7	
TBH27_10	10	0.2	1.8%	21.5	16.0	16.2	
TBH27_25	10	0.2	2.2%	20.6	15.4	15.6	
TBH27_30	10	0.2	2.5%	20.0	14.9	15.2	
TBH27_00	10	0.3	2.7%	19.6	14.6	14.9	
TBH27_50	10	0.3	3.1%	18.9	14.0	14.0	
TBH27_75	10	0.3	3.3%	18.5	13.7	14.1	
TBH27_100	10	0.3	3.5%	18.2	13.5	13.9	
TBH27 125	10	0.0	3.6%	18.0	13.3	13.7	
TBH27_150	10	0.4	3.6%	17.8	13.2	13.6	
TBH27 175	10	0.4	3.7%	17.7	13.1	13.4	
TBH27 200	10	0.4	3.6%	17.5	13.0	13.3	
TBH28 200	10	-0.2	-1.5%	18.8	14.0	13.8	
TBH29 5	10	0.1	1.1%	21.0	15.8	15.9	
TBH29 10	10	0.1	1.4%	19.9	14.9	15.0	
TBH29 15	10	0.2	1.6%	19.2	14.3	14.4	
TBH29 20	10	0.2	1.7%	18.7	13.9	14.0	
TBH29 25	10	0.2	1.9%	18.0	13.3	13.5	
TBH29 30	10	0.2	2.0%	17.6	13.0	13.2	
TBH29 40	10	0.2	2.0%	17.3	12.7	12.9	
TBH29 50	10	0.2	2.0%	16.7	12.3	12.5	
TBH29 75	10	0.2	1.9%	16.4	12.1	12.2	
TBH29_100	10	0.2	1.9%	16.2	11.9	12.1	
TBH29_125	10	0.2	1.8%	16.1	11.8	12.0	
TBH29_150	10	0.2	1.7%	16.0	11.7	11.9	
TBH29_175	10	0.2	1.7%	15.9	11.6	11.8	
TBH29_200	10	0.2	1.6%	15.8	11.6	11.7	
TBH3_0	10	1.0	10.3%	24.7	19.1	20.1	
TBH3_5	10	0.6	5.8%	20.1	15.1	15.7	
TBH3_10	10	0.5	4.5%	18.7	13.9	14.4	
TBH3_15	10	0.4	3.8%	17.9	13.3	13.7	
TBH3_20	10	0.3	3.3%	17.5	12.9	13.3	
TBH3_25	10	0.3	2.8%	16.9	12.5	12.8	
TBH3_30	10	0.2	2.5%	16.5	12.2	12.4	
TBH3_40	10	0.2	2.2%	16.3	12.0	12.2	
TBH3_50	10	0.2	1.9%	15.9	11.7	11.9	
TBH3_75	10	0.2	1.7%	15.7	11.6	11.7	
TBH3_100	10	0.2	1.6%	15.6	11.5	11.6	

	Oritical	Road	Contribution		Total Concentr	ation
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year DM	Future year DS
TBH3 125	10	0.1	1.5%	15.5	11.4	11.5
TBH3_150	10	0.1	1.4%	15.5	11.3	11.5
TBH3 175	10	0.1	1.3%	15.4	11.3	11.4
TBH3 200	10	0.1	1.3%	15.4	11.3	11.4
TBH30_5	10	0.4	3.7%	22.6	17.0	17.4
TBH30_10	10	0.3	3.4%	21.8	16.4	16.8
TBH30 15	10	0.3	3.1%	21.2	15.9	16.3
TBH30_20	10	0.3	2.9%	20.8	15.5	15.8
TBH30_25	10	0.3	2.6%	20.0	14.9	15.2
TBH30_30	10	0.2	2.4%	19.4	14.4	14.7
TBH30 40	10	0.2	2.2%	18.9	14.1	14.3
TBH30_50	10	0.2	1.9%	18.1	13.4	13.6
TBH30 75	10	0.2	1.8%	17.6	13.0	13.2
TBH30 100	10	0.2	1.6%	17.2	12.7	12.9
TBH30 125	10	0.2	1.6%	16.9	12.5	12.7
TBH30 150	10	0.2	1.5%	16.7	12.3	12.5
TBH30 175	10	0.1	1.5%	16.6	12.2	12.3
TBH30_200	10	0.1	1.4%	16.4	12.1	12.2
TBH31 0	10	-0.2	-1.5%	22.0	16.4	16.3
TBH31 175	10	0.1	1.1%	15.3	11.2	11.3
TBH31 200	10	0.1	1.1%	15.2	11.2	11.3
TBH32_0	10	-0.3	-2.6%	20.8	15.4	15.1
TBH32 5	10	-0.2	-1.8%	19.9	14.7	14.5
TBH32 10	10	-0.1	-1.3%	19.3	14.3	14.1
TBH32 100	10	0.1	1.1%	15.8	11.6	11.7
TBH32 125	10	0.1	1.1%	15.5	11.4	11.5
TBH32 150	10	0.1	1.2%	15.3	11.2	11.3
TBH32 175	10	0.1	1.2%	15.2	11.1	11.3
TBH32 200	10	0.1	1.3%	15.1	11.1	11.2
TBH33_0	10	-0.3	-3.2%	19.8	14.8	14.4
TBH33_5	10	-0.1	-1.3%	18.8	14.0	13.8
TBH33_30	10	0.1	1.3%	16.9	12.4	12.6
TBH33_40	10	0.1	1.4%	16.7	12.3	12.4
TBH33_50	10	0.2	1.6%	16.4	12.1	12.2
TBH33_75	10	0.2	1.7%	16.2	11.9	12.1
TBH33_100	10	0.2	1.8%	16.1	11.8	12.0
TBH33_125	10	0.2	1.8%	16.0	11.8	11.9
TBH33_150	10	0.2	1.9%	16.0	11.7	11.9
TBH33_175	10	0.2	1.9%	15.9	11.7	11.9
TBH33_200	10	0.2	1.9%	15.9	11.7	11.9
TBH34_0	10	-0.9	-8.5%	24.6	18.8	17.9
TBH34_5	10	-0.6	-5.7%	22.1	16.7	16.1
TBH34_10	10	-0.4	-4.3%	20.9	15.7	15.2
TBH34_15	10	-0.3	-3.4%	20.1	15.0	14.7
TBH34_20	10	-0.3	-2.8%	19.5	14.5	14.2
TBH34_25	10	-0.2	-1.9%	18.7	13.9	13.7
TBH34_30	10	-0.1	-1.3%	18.1	13.4	13.3
TBH6_0	10	1.5	14.7%	23.8	17.7	19.2
TBH6_5	10	1.3	12.8%	22.8	16.9	18.1
TBH6_10	10	1.1	11.4%	21.9	16.2	17.4
TBH6_15	10	1.0	10.4%	21.3	15.7	16.7
TBH6_20	10	0.9	9.5%	20.7	15.3	16.2
TBH6_25	10	0.8	8.2%	19.9	14.6	15.5

	Critical	Road	Contribution	Total Concentration		
Receptor	Load	Absolute Change	Change as % of Critical Load	Base Year	Future Year DM	Future year DS
TBH6_30	10	0.7	7.2%	19.3	14.2	14.9
TBH6_40	10	0.6	6.5%	18.8	13.8	14.5
TBH6_50	10	0.5	5.2%	18.0	13.2	13.7
TBH6_75	10	0.4	4.5%	17.4	12.8	13.2
TBH6_100	10	0.4	3.9%	17.0	12.5	12.9
TBH6_125	10	0.4	3.5%	16.8	12.3	12.6
TBH6_150	10	0.3	3.2%	16.5	12.1	12.4
TBH6_175	10	0.3	2.9%	16.3	12.0	12.3
TBH6_200	10	0.3	2.7%	16.2	11.9	12.1
TBH6_75	10	0.4	4.50%	17.4	12.8	13.2
TBH6_100	10	0.4	3.90%	17.0	12.5	12.9
TBH6_125	10	0.4	3.50%	16.8	12.3	12.6
TBH6_150	10	0.3	3.20%	16.5	12.1	12.4
TBH6_175	10	0.3	2.90%	16.3	12.0	12.3
TBH6_200	10	0.3	2.70%	16.2	11.9	12.1

Appendix F Figures

Document Path: \\Bri-vfps-001\bri\Projects\46807_WokinghamLPU\AQ LPU 2021\Plans and Figures\ArcGIS\46807 WokinghamLPU2021 Fig6.1.mxd

Document Path: \\Bri-vfps-001\bri\Projects\46807_WokinghamLPU\AQ LPU 2021\Plans and Figures\ArcGIS\46807 WokinghamLPU2021 Fig6.1.mxd

Document Path: \\Bri-vfps-001\bri\Projects\46807_WokinghamLPU\AQ LPU 2021\Plans and Figures\ArcGIS\46807 WokinghamLPU2021 Fig6.1.mxd

